Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Biol Sci ; 291(2020): 20232874, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565152

RESUMEN

Protected area (PA) networks are a pivotal tool to fight biodiversity loss, yet they often need to balance the mission of nature conservation with the socio-economic need of giving opportunity for outdoor recreation. Recreation in natural areas is important for human health in an urbanized society, but can prompt behavioural modifications in wild animals. Rarely, however, have these responses being studied across multiple PAs and using standardized methods. We deployed a systematic camera trapping protocol at over 200 sites to sample medium and large mammals in four PAs within the European Natura 2000 network to assess their spatio-temporal responses to human frequentation, proximity to towns, amount of open habitat and topographical variables. By applying multi-species and single-species models for the number of diurnal, crepuscular and nocturnal detections and a multi-species model for nocturnality index, we estimated both species-specific- and meta-community-level effects, finding that increased nocturnality appeared the main strategy that the mammal meta-community used to cope with human disturbance. However, responses in the diurnal, crepuscular and nocturnal site use were mediated by species' body mass, with larger species exhibiting avoidance of humans and smaller species more opportunistic behaviours. Our results show the effectiveness of standardized sampling and provide insights for planning the expansion of PA networks as foreseen by the Kunming-Montreal biodiversity agreement.


Asunto(s)
Conservación de los Recursos Naturales , Mamíferos , Animales , Humanos , Conservación de los Recursos Naturales/métodos , Mamíferos/fisiología , Ecosistema , Animales Salvajes , Biodiversidad , Italia
2.
Genes Cells ; 26(12): 979-986, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34570411

RESUMEN

Alpha satellite DNA is a major DNA component of primate centromeres. We previously reported that Azara's owl monkey has two types of alpha satellite DNA, OwlAlp1 and OwlAlp2. OwlAlp2 (344 bp) exhibits a sequence similarity throughout its entire length with alpha satellite DNA of closely related species. OwlAlp1 (185 bp) corresponds to the part of OwlAlp2. Based on the observation that the CENP-A protein binds to OwlAlp1, we proposed that OwlAlp1 is a relatively new repetitive DNA that replaced OwlAlp2 as the centromeric satellite DNA. However, a detailed picture of the evolutionary process of this centromere DNA replacement remains largely unknown. Here, we performed a phylogenetic analysis of OwlAlp1 and OwlAlp2 sequences, and also compared our results to alpha satellite DNA sequences of other primate species. We found that: (i) OwlAlp1 exhibits a higher similarity to OwlAlp2 than to alpha satellite DNA of other species, (ii) OwlAlp1 has a single origin, and (iii) sequence variation is lower in OwlAlp1 than in OwlAlp2. We conclude that OwlAlp1 underwent a recent and rapid expansion in the owl monkey lineage. This centromere DNA replacement could have been facilitated by the heterochromatin reorganization that is associated with the adaptation of owl monkeys to a nocturnal lifestyle.


Asunto(s)
Aotidae , Centrómero , Animales , Aotidae/genética , Centrómero/genética , Proteína A Centromérica , ADN Satélite/genética , Filogenia
3.
Conserv Biol ; 36(3): e13839, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34533235

RESUMEN

In the Anthropocene, understanding the impacts of anthropogenic influence on biodiversity and behavior of vulnerable wildlife communities is increasingly relevant to effective conservation. However, comparative studies aimed at disentangling the concurrent effect of different types of human disturbance on multifaceted biodiversity and on activity patterns of mammals are surprisingly rare. We applied a multiregion community model to separately estimate the effects of cumulative human modification (e.g., settlement, agriculture, and transportation) and human presence (aggregated presence of dogs, people, and livestock) on species richness and functional composition of medium- and large-bodied mammals based on camera trap data collected across 45 subtropical montane forests. We divided the detected mammal species into three trophic guilds-carnivores, herbivores, and omnivores-and assessed the nocturnal shifts of each guild in response to anthropogenic activities. Overall, species richness tended to increase (ß coefficient = 0.954) as human modification increased but richness decreased as human presence increased (ß = -1.054). Human modification was associated with significantly lower functional diversity (mean nearest taxon distance [MNTD], ß = -0.134; standardized effect sizes of MNTD, ß = -0.397), community average body mass (ß = -0.240), and proportion of carnivores (ß = -0.580). Human presence was associated with a strongly reduced proportion of herbivores (ß = -0.522), whereas proportion of omnivores significantly increased as human presence (ß = 0.378) and habitat modification (ß = 0.419) increased. In terms of activity patterns, omnivores (ß = 12.103) and carnivores (ß = 9.368) became more nocturnal in response to human modification. Our results suggest that human modification and human presence have differing effects on mammals and demonstrate that anthropogenic disturbances can lead to drastic loss of functional diversity and result in a shift to nocturnal behavior of mammals. Conservation planning should consider concurrent effects of different types of human disturbance on species richness, functional diversity, and behavior of wildlife communities.


Pérdidas en la Diversidad Funcional y Cambios en el Comportamiento Nocturno de los Mamíferos bajo la Perturbación Antropogénica Resumen En el Antropoceno, el conocimiento sobre la influencia antropogénica sobre la biodiversidad y el comportamiento de las comunidades vulnerables de fauna es cada vez más relevante para la conservación efectiva. Sin embargo, sorprende que los estudios comparativos dirigidos a desentrañar el efecto concurrente de los diferentes tipos de perturbación humana sobre la biodiversidad multifacética y sobre los patrones de actividad de los mamíferos son escasos. Aplicamos un modelo de comunidad multirregional para estimar de manera separada los efectos de la modificación humana (p. ej.: establecimientos, agricultura, transporte) y la presencia humana (presencia agregada de perros, gente y ganado) acumuladas sobre la riqueza de especies y la composición funcional de los mamíferos de tamaño mediano y grande con base en datos de fototrampas recolectados en 45 bosques montanos subtropicales. Dividimos las especies de mamíferos detectadas en tres gremios tróficos: carnívoros, herbívoros y omnívoros, y analizamos los cambios nocturnos de cada gremio como respuesta a las actividades antropogénicas. En general, la riqueza de especies tuvo una tendencia al incremento (coeficiente ß = 0.954) conforme aumentaron las modificaciones humanas, pero la riqueza disminuyó conforme incrementó la presencia humana (ß = −1.054). Las modificaciones humanas estuvieron asociadas con una diversidad funcional (distancia promedio al taxón más cercano [DPTC], ß = −0.134; tamaños del efecto estandarizado de la DPTC, ß = −0.397), masa corporal promedio de la comunidad (ß = −0.240) y proporción de carnívoros (ß = −0.580) significativamente más bajas. La presencia humana estuvo asociada con una proporción gravemente reducida de herbívoros (ß = −0.522), mientras que la proporción de omnívoros incrementó significativamente conforme aumentaron la presencia humana (ß = 0.378) y la modificación del hábitat (ß = 0.419). En cuanto a los patrones de actividad, los omnívoros (ß = 12.103) y los carnívoros (ß = 9.368) se volvieron más nocturnos como respuesta a las modificaciones humanas. Nuestros resultados sugieren que las modificaciones humanas y la presencia de personas tienen efectos diferentes sobre los mamíferos y demuestran que las perturbaciones antropogénicas pueden llevar a pérdidas drásticas de la diversidad funcional y resultar en un cambio hacia el comportamiento nocturno en los mamíferos. La planeación de la conservación debería considerar los efectos concurrentes de los diferentes tipos de perturbaciones humanas sobre la riqueza de especies, la diversidad funcional y el comportamiento de las comunidades faunísticas.


Asunto(s)
Efectos Antropogénicos , Conservación de los Recursos Naturales , Animales , Animales Salvajes , Biodiversidad , Conservación de los Recursos Naturales/métodos , Perros , Ecosistema , Humanos , Mamíferos/fisiología
4.
BMC Genomics ; 21(1): 596, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32862827

RESUMEN

BACKGROUND: Most animals restrict their activity to a specific part of the day, being diurnal, nocturnal or crepuscular. The genetic basis underlying diurnal preference is largely unknown. Under laboratory conditions, Drosophila melanogaster is crepuscular, showing a bi-modal activity profile. However, a survey of strains derived from wild populations indicated that high variability among individuals exists, including flies that are nocturnal. RESULTS: Using a highly diverse population, we performed an artificial selection experiment, selecting flies with extreme diurnal or nocturnal preference. After 10 generations, we obtained highly diurnal and nocturnal strains. We used whole-genome expression analysis to identify differentially expressed genes in diurnal, nocturnal and crepuscular (control) flies. Other than one circadian clock gene (pdp1), most differentially expressed genes were associated with either clock output (pdf, to) or input (Rh3, Rh2, msn). This finding was congruent with behavioural experiments indicating that both light masking and the circadian pacemaker are involved in driving nocturnality. CONCLUSIONS: Our study demonstrates that genetic variation segregating in wild populations contributes to substantial variation in diurnal preference. We identified candidate genes associated with diurnality/nocturnality, while data emerging from our expression analysis and behavioural experiments suggest that both clock and clock-independent pathways are involved in shaping diurnal preference. The diurnal and nocturnal selection strains provide us with a unique opportunity to understand the genetic architecture of diurnal preference.


Asunto(s)
Relojes Circadianos , Drosophila melanogaster , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Drosophila melanogaster/genética , Actividad Motora
5.
J Anim Ecol ; 89(1): 132-145, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31799691

RESUMEN

Humans, as super predators, can have strong effects on wildlife behaviour, including profound modifications of diel activity patterns. Subsequent to the return of large carnivores to human-modified ecosystems, many prey species have adjusted their spatial behaviour to the contrasting landscapes of fear generated by both their natural predators and anthropogenic pressures. The effects of predation risk on temporal shifts in diel activity of prey, however, remain largely unexplored in human-dominated landscapes. We investigated the influence of the density of lynx Lynx lynx, a nocturnal predator, on the diel activity patterns of their main prey, the roe deer Capreolus capreolus, across a gradient of human disturbance and hunting at the European scale. Based on 11 million activity records from 431 individually GPS-monitored roe deer in 12 populations within the EURODEER network (http://eurodeer.org), we investigated how lynx predation risk in combination with both lethal and non-lethal human activities affected the diurnality of deer. We demonstrated marked plasticity in roe deer diel activity patterns in response to spatio-temporal variations in risk, mostly due to human activities. In particular, roe deer decreased their level of diurnality by a factor of 1.37 when the background level of general human disturbance was high. Hunting exacerbated this effect, as during the hunting season deer switched most of their activity to night-time and, to a lesser extent, to dawn, although this pattern varied noticeably in relation to lynx density. Indeed, in the presence of lynx, their main natural predator, roe deer were relatively more diurnal. Overall, our results revealed a strong influence of human activities and the presence of lynx on diel shifts in roe deer activity. In the context of the recovery of large carnivores across Europe, we provide important insights about the effects of predators on the behavioural responses of their prey in human-dominated ecosystems. Modifications in the temporal partitioning of ungulate activity as a response to human activities may facilitate human-wildlife coexistence, but likely also have knock-on effects for predator-prey interactions, with cascading effects on ecosystem functioning.


Résumé Les humains, en tant que 'super-prédateurs', peuvent avoir des effets importants sur le comportement de la faune sauvage, y compris des modifications profondes de leurs rythmes circadiens d'activité. A la suite du retour des grands carnivores dans les écosystèmes anthropisés, de nombreuses espèces proies ont ajusté leur comportement spatial à ces paysages de la peur contrastés, générés à la fois par les pressions liées aux risques anthropiques et à la présence de leurs prédateurs naturels. Les effets du risque de prédation sur les modifications temporelles des rythmes circadiens d'activité des proies restent cependant largement inconnus dans les écosystèmes dominés par l'homme. Ici, nous avons étudié l'influence de la densité de lynx Lynx lynx, un prédateur nocturne, sur les rythmes circadiens d'activité de leur proie principale, le chevreuil Capreolus capreolus, à travers un gradient de pressions anthropiques à l'échelle Européenne. Sur la base de plus de 11 million de données d'activité issues de 431 suivis individuels de chevreuils équipés de colliers GPS provenant de 12 populations au sein du réseau EURODEER (http://eurodeer.org), nous avons analysé comment le risque de prédation par le lynx, associé aux risques létaux et non-létaux des activités humaines, influence la diurnalité des chevreuils. Nous avons démontré une forte plasticité des rythmes circadiens d'activité des chevreuils en réponse aux variations spatio-temporelles du risque, et notamment face aux activités humaines. Plus particulièrement, les chevreuils diminuent leur degré de diurnalité d'un facteur de 1.37 lorsque le dérangement humain est important. La chasse accentue cet effet, puisque durant la saison de chasse les chevreuils basculent la plupart de leur activité de nuit, et dans une moindre mesure, durant l'aube également, bien que ce patron soit essentiellement variable en fonction de la densité de lynx. En effet, en présence de lynx, leur principal prédateur, les chevreuils sont relativement plus diurnes. Globalement, nos résultats révèlent une forte influence des activités humaines et de la présence de lynx sur l'ajustement des rythmes circadiens d'activité des chevreuils. Dans le contexte du retour des grands carnivores en Europe, notre étude apporte de nouvelles connaissances sur les effets des prédateurs sur la réponse comportementale de leur proie dans des écosystèmes anthropisés. La modification de la répartition temporelle de l'activité des ongulés en réponse aux activités humaines pourrait être un facteur facilitant la coexistence homme-faune sauvage, avec toutefois des conséquences autres sur les interactions prédateurs-proies et leurs effets en cascade sur le fonctionnement des écosystèmes.


Asunto(s)
Ciervos , Lynx , Animales , Ecosistema , Europa (Continente) , Miedo , Humanos , Conducta Predatoria
6.
BMC Evol Biol ; 19(1): 189, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619159

RESUMEN

BACKGROUND: Many living birds exhibit some nocturnal activity, but the genetic basis and evolutionary origins of their nocturnality remain unknown. RESULTS: Here, we used a molecular phyloecological approach to analyze the adaptive evolution of 33 phototransduction genes in diverse bird lineages. Our results suggest that functional enhancement of two night-vision genes, namely, GRK1 and SLC24A1, underlies the nocturnal adaption of living birds. Further analyses showed that the diel activity patterns of birds have remained relatively unchanged since their common ancestor, suggesting that the widespread nocturnal activity of many living birds may largely stem from their common ancestor rather than independent evolution. Despite this evolutionary conservation of diel activity patterns in birds, photoresponse recovery genes were found to be frequently subjected to positive selection in diverse bird lineages, suggesting that birds generally have evolved an increased capacity for motion detection. Moreover, we detected positive selection on both dim-light vision genes and bright-light vision genes in the class Aves, suggesting divergent evolution of the vision of birds from that of reptiles and that different bird lineages have evolved certain visual adaptions to their specific light conditions. CONCLUSIONS: This study suggests that the widespread nocturnality of extant birds has a deep evolutionary origin tracing back to their common ancestor.


Asunto(s)
Conducta Animal/fisiología , Aves/clasificación , Filogenia , Animales , Aves/genética , Fototransducción/genética , Selección Genética , Programas Informáticos
7.
Proc Biol Sci ; 286(1897): 20182185, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963837

RESUMEN

The diapsid lineage (birds) and synapsid lineage (mammals), share a suite of functionally similar characteristics (e.g. endothermy) that are considered to be a result of their convergent evolution, but the candidate selections leading to this convergent evolution are still under debate. Here, we used a newly developed molecular phyloecological approach to reconstruct the diel activity pattern of the common ancestors of living birds. Our results strongly suggest that they had adaptations to nocturnality during their early evolution, which is remarkably similar to that of ancestral mammals. Given their similar adaptation to nocturnality, we propose that the shared traits in birds and mammals may have partly evolved as a result of the convergent evolution of their early ancestors adapting to ecological factors (e.g. low ambient temperature) associated with nocturnality. Finally, a conceptually unifying ecological model on the evolution of endothermy in diverse organisms with an emphasis on low ambient temperature is proposed. We reason that endothermy may evolve as an adaptive strategy to enable organisms to effectively implement various life-cycle activities under relatively low-temperature environments. In particular, a habitat shift from high-temperature to relatively low-temperature environments is identified as a common factor underlying the evolution of endothermy.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Aves , Rasgos de la Historia de Vida , Mamíferos , Animales , Aves/anatomía & histología , Aves/fisiología , Ritmo Circadiano , Mamíferos/anatomía & histología , Mamíferos/fisiología , Modelos Biológicos
8.
Artículo en Inglés | MEDLINE | ID: mdl-30840127

RESUMEN

Large carpenter bees are charismatic and ubiquitous flower visitors in the tropics and sub-tropics. Unlike honeybees and bumblebees that have been popular subjects of extensive studies on their neuroethology, behaviour and ecology, carpenter bees have received little attention. This review integrates what is known about their foraging behaviour as well as sensory, physiological and cognitive adaptations and is motivated by their versatility as flower visitors and pollinators. This is evident from their extremely generalist foraging and adeptness at handling diverse flower types as legitimate pollinators and as illegitimate nectar robbers. They purportedly use traplining to forage between isolated patches and are long-distance flyers over several kilometres suggesting well-developed spatial learning, route memory and navigational capabilities. They have a broad range of temperature tolerance and thermoregulatory capabilities which are likely employed in their forays into crepuscular and nocturnal time periods. Such temporal extensions into dim-light periods invoke a suite of visual adaptations in their apposition optics. Thus, we propose that carpenter bees are an excellent though understudied group for exploring the complex nature of plant-pollinator mutualisms from ecological and mechanistic perspectives.


Asunto(s)
Adaptación Fisiológica/fisiología , Abejas/fisiología , Conducta Alimentaria/fisiología , Animales
9.
Folia Primatol (Basel) ; 90(5): 422-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31416063

RESUMEN

Scent marking is a well-established, but highly variable, mode of communication among strepsirrhine primates. We begin by reviewing this literature, focusing on nocturnal species. Our understanding about the information content of scent signals and the factors driving species diversity remains incomplete, owing to difficulties in acquiring comparative chemical data. We therefore re-examine such a data set, representing the richness and relative abundance of volatile organic compounds (VOCs) in the urine of 12 species (from Galagidae, Lorisidae, Daubentoniidae, Cheirogaleidae, Indriidae, and Lemuridae), to explore differences between nocturnal, diurnal and cathemeral species. As predicted by the variable importance of urine marking across species, the urine of nocturnal strepsirrhines contained the most VOCs and putative semiochemicals, differed significantly in composition from that of diurnal and cathemeral species and showed the strongest species scent "signatures." Relevant to retracing the evolutionary trajectory of cathemeral strepsirrhines, nocturnal and diurnal species were most differentiated in their VOCs, with cathemeral species being intermediary, but more closely aligned with diurnal species. These data support cathemerality as an ancient expansion of diurnal animals into a nocturnal niche. Consideration of the traits and variables associated with olfactory communication offers a profitable new way for examining species diversity and patterns of evolutionary change.


Asunto(s)
Comunicación Animal , Strepsirhini/fisiología , Orina/química , Animales , Evolución Biológica , Ritmo Circadiano , Femenino , Masculino , Odorantes/análisis , Olfato , Especificidad de la Especie
10.
Bioessays ; 38(7): 694-703, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27172298

RESUMEN

The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general.


Asunto(s)
Evolución Biológica , Aves/fisiología , Genoma , Visión Nocturna/genética , Animales , Aves/genética , Genómica
11.
J Therm Biol ; 75: 97-105, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30017058

RESUMEN

Activity patterns in ectotherms rely on the structure of the thermal environment and thermoregulatory opportunities during activity periods. A dichotomy between diurnal and nocturnal ectotherms is not clear in every case, and temperature can directly affect the daily activity period in these organisms during both photophase and scotophase. In the present study we evaluate the thermal ecology of six tropical night lizards (genus Lepidophyma) from Mexico. Our results indicate a thermoconformer strategy in most of the studied species. In these species, thermal tolerances are associated with environmental temperatures to which they are exposed. Furthermore, thermal quality of the environment directly determines the daily activity period. Therefore, we argue that diurnal activity in Lepidophyma species is determined by local thermal conditions.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos/fisiología , Animales , Ritmo Circadiano , Femenino , Masculino , México , Temperatura
12.
Am J Phys Anthropol ; 164(1): 203-211, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28573721

RESUMEN

OBJECTIVES: Except for owl monkeys (Aotus spp.), all anthropoid primates are considered strictly diurnal. Recent studies leveraging new technologies have shown, however, that some diurnal anthropoids also engage in nocturnal activity. Here we examine the extent to which vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) are active at night. MATERIALS AND METHODS: We deployed GPS collars with tri-axial accelerometer data loggers on 18 free-ranging adult females: 12 vervets spread among 5 social groups, and 6 olive baboons spread among 4 groups. Their locations were recorded every 15 min, and their activity levels, for 3 s/min over 7.5 months. We also used camera traps that were triggered by heat and movement at seven sleeping sites. RESULTS: Travel was detected on 0.4% of 2,029 vervet-nights involving 3 vervets and 1.1% of 1,109 baboon-nights involving 5 baboons. Travel was mainly arboreal for vervets but mainly terrestrial for baboons. During the night, vervets and baboons were active 13% and 15% of the time, respectively. Activity varied little throughout the night and appeared unaffected by moon phase. DISCUSSION: Our results confirm the low nocturnality of vervets and olive baboons, which we suggest is related to living near the equator with consistent 12-hr days, in contrast to other anthropoids that are more active at night. Since anthropoid primates are thought to have evolved in northern latitudes, with later dispersal to tropical latitudes, our results may have implications for understanding the evolution of anthropoid diurnality.


Asunto(s)
Chlorocebus aethiops/fisiología , Ritmo Circadiano/fisiología , Papio anubis/fisiología , Animales , Antropología Física , Evolución Biológica , Sistemas de Información Geográfica , Kenia
13.
J Anim Ecol ; 83(2): 504-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24102189

RESUMEN

The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.


Asunto(s)
Cadena Alimentaria , Luz , Mamíferos/fisiología , Luna , Animales , Dieta , Ecosistema , Conducta Alimentaria , Filogenia , Visión Ocular
14.
J Mammal ; 104(4): 846-854, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37545665

RESUMEN

Wolves have been the archetype of wildlife persecution by humans for centuries all over the world, and still are heavily persecuted in some regions. Facultative diurnal/nocturnal wild mammals are known to become more nocturnal when persecuted. Conversely, little is known regarding the possibility of wolves becoming more diurnal if not persecuted. We took advantage of a 9-year natural experiment of restricted human access to a restored coal mine debris dump to study the daily activity patterns of wolves under conditions of infrequent human presence. Results were compared with a paired control site with frequent human use. Circadian wolf activity was monitored using camera traps (3 years in human-restricted site; 2 years in control). Additionally, data from two GPS-GSM-collared wolves monitored in a second control site were also analyzed. In our control sites, wolves were nearly inactive during daylight hours. In contrast, in the human-restricted site wolves extended their activity toward noon, with a daily activity peak between 10:00 and 12:00, and showed some activity throughout the entire circadian 2-h interval cycle considered. Wolves clearly had higher diurnality in the human-restricted area with 78% greater incidence of capture with remote cameras during the day than in the control site. We suggest that the shift toward increased diurnality was related to the loss of fear of humans. Evidence in support of this hypothesis comes from flight initiation distance (FID) data. Wolves showed relatively short FIDs when faced with a human observer (range 70-183 m) in broad daylight at the human-restricted site, but were so afraid of humans in the control site that we were unable to conduct FID trials there. Based on these results, we suggest that wolves may increase their diurnality in those European countries with currently increasing movement of human populations from rural to urban areas and that do not conduct lethal control of wolves. This would represent a historical landmark for a species that has been persecuted for many centuries. However, such behavioral shifts could bring new human-wolf conflicts that would require new policies.

15.
BMC Ecol Evol ; 23(1): 77, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114918

RESUMEN

Vertebrate brains show extensive variation in relative size. The expensive brain hypothesis argues that one important source of this variation is linked to a species' ability to generate the energy required to sustain the brain, especially during periods of unavoidable food scarcity. Here we ask whether this hypothesis, tested so far in endothermic vertebrates, also applies to ectotherms, where ambient temperature is an additional major aspect of energy balance. Phylogenetic comparative analyses of reptiles and amphibians support the hypothesis. First, relative brain size increases with higher body temperature in those species active during the day that can gain free energy by basking. Second, relative brain size is smaller among nocturnal species, which generally face less favorable energy budgets, especially when maintaining high body temperature. However, we do not find an effect of seasonal variation in ambient temperature or food on brain size, unlike in endotherms. We conclude that the factors affecting energy balance in ectotherms and endotherms are overlapping but not identical. We therefore discuss the idea that when body temperatures are seasonally very low, cognitive benefits may be thwarted and selection on larger brain size may be rare. Indeed, mammalian hibernators may show similarities to ectotherms.


Asunto(s)
Anfibios , Reptiles , Animales , Filogenia , Vertebrados , Mamíferos , Encéfalo
16.
Conserv Physiol ; 11(1): coac082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694595

RESUMEN

High-latitude lizards live in environments where ambient air temperature at night is frequently below retreat temperatures, which likely has implications for nocturnal emergence and activity. However, patterns of lizard activity at night under current temperate climates are poorly understood, a situation that limits our understanding of potential effects of climate change. We investigated patterns of nocturnal emergence and activity in the cold-adapted, viviparous gecko (Woodworthia 'Otago/Southland'). We measured operative environmental temperature (T e) available to geckos that emerged at night and simultaneously assessed nighttime emergence activity using time-lapse trail cameras. Also, we assessed field body temperature (T b) of emerged geckos of various life history groups at night using thermography to understand how current weather conditions affect field T b of emerged geckos. Our results show that Te , nocturnal emergence activity and field-active T b increased with nighttime air temperature. Nocturnal emergence was highest in spring and summer but also occurred in autumn and (unexpectedly) in winter. Geckos were active over a broad range of T b down to 1.4°C (a new record low for lizards) and on rock surfaces typically warmer than air temperature or T b. We conclude that this nocturnal, high-latitude lizard from the temperate zone is capable of activity at low winter temperatures, but that current climate limits emergence and activity at least in autumn and winter. Activity levels for cool-temperate reptiles will probably increase initially as climates warm, but the consequences of increased nocturnal activity under climate change will probably depend on how climate change affects predator populations as well as the focal species' biology.

17.
Genome Biol Evol ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533923

RESUMEN

In rod cells of many nocturnal mammals, heterochromatin localizes to the central region of the nucleus and serves as a lens to send light efficiently to the photoreceptor region. The genus Aotus (owl monkeys) is commonly considered to have undergone a shift from diurnal to nocturnal lifestyle. We recently demonstrated that rod cells of the Aotus species Aotus azarae possess a heterochromatin block at the center of its nucleus. The purpose of the present study was to estimate the time span in which the formation of the heterochromatin block took place. We performed three-dimensional hybridization analysis of the rod cell of another species, Aotus lemurinus. This analysis revealed the presence of a heterochromatin block that consisted of the same DNA components as those in A. azarae. These results indicate that the formation was complete at or before the separation of the two species. Based on the commonly accepted evolutionary history of New World monkeys and specifically of owl monkeys, the time span for the entire formation process was estimated to be 15 Myr at most.


Asunto(s)
Aotidae/genética , Heterocromatina , Células Fotorreceptoras Retinianas Bastones , Animales , Aotidae/clasificación , Evolución Biológica , Cebidae/genética , Filogenia
18.
J Biol Rhythms ; 36(6): 575-588, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634956

RESUMEN

The food-entrainable oscillator, which underlies the prefeeding activity peak developed by restricted daily feeding (RF) in rodents, does not depend on the circadian pacemaker in the suprachiasmatic nucleus (SCN) or on the known clock genes. In the present study, to clarify the roles of SCN circadian pacemaker and nutrient conditions on the development of prefeeding activity peak, RF of 3-h daily feeding was imposed on four groups of adult male mice for 10 cycles at different circadian times, zeitgeber time (ZT)2, ZT8, ZT14, and ZT20, where ZT0 is the time of lights-on in LD12:12. Seven days after the termination of RF session with ad libitum feeding in between, total food deprivation (FD) for 72 h was imposed. Wheel-running activity and core body temperature were measured throughout the experiment. Immediately after the RF or FD session, the PER2::LUC rhythms were measured in the cultured SCN slices and peripheral tissues. Not only the buildup process and magnitude of the prefeeding activity peak, but also the percentages of nocturnal activity and hypothermia developed under RF were significantly different among the four groups, indicating the involvement of light entrained circadian pacemaker. The buildup of prefeeding activity peak was accomplished by either phase-advance or phase-delay shifts (or both) of activity bouts comprising a nocturnal band. Hypothermia under FD was less prominent in RF-exposed mice than in naïve counterparts, indicating that restricted feeding increases tolerance to caloric restriction as well as to the heat loss mechanism. RF phase-shifted the peripheral clocks but FD did not affect the clocks in any tissue examined. These findings are better understood by assuming multiple bout oscillators, which are located outside the SCN and directly drive activity bouts uncoupled from the circadian pacemaker by RF or hypothermia.


Asunto(s)
Ritmo Circadiano , Animales , Conducta Alimentaria , Alimentos , Masculino , Ratones , Núcleo Supraquiasmático
19.
Conserv Physiol ; 7(1): coz044, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341624

RESUMEN

While most studies of the impacts of climate change have investigated shifts in the spatial distribution of organisms, temporal shifts in the time of activity is another important adjustment made by animals in a changing world. Due to the importance of light and temperature cycles in shaping activity patterns, studies of activity patterns of organisms that inhabit extreme environments with respect to the 24-hour cyclicity of Earth have the potential to provide important insights into the interrelationships among abiotic variables, behaviour and physiology. Our previous laboratory studies with Argentinean tuco-tucos from the Monte desert (Ctenomys aff. knighti) show that these subterranean rodents display circadian activity/rest rhythms that can be synchronized by artificial light/dark cycles. Direct observations indicate that tuco-tucos emerge mainly for foraging and for removal of soil from their burrows. Here we used bio-logging devices for individual, long-term recording of daily activity/rest (accelerometry) and time on surface (light-loggers) of six tuco-tucos maintained in outdoor semi-natural enclosures. Environmental variables were measured simultaneously. Activity bouts were detected both during day and night but 77% of the highest values happened during the daytime and 47% of them coincided with time on surface. Statistical analyses indicate time of day and temperature as the main environmental factors modulating time on surface. In this context, the total duration that these subterranean animals spent on surface was high during the winter, averaging 3 h per day and time on surface occurred when underground temperature was lowest. Finally, transport of these animals to the indoor laboratory and subsequent assessment of their activity rhythms under constant darkness revealed a switch in the timing of activity. Plasticity of activity timing is not uncommon among desert rodents and may be adaptive in changing environments, such as the desert where this species lives.

20.
Genome Biol ; 20(1): 181, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31464627

RESUMEN

BACKGROUND: Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night. RESULTS: Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle. Compared with diurnal birds, owls exhibit striking adaptations to the nocturnal environment, including functional trade-offs in the sensory systems, such as loss of color vision genes and selection for enhancement of nocturnal vision and other sensory systems that are convergent with other nocturnal avian orders. Additionally, we find that a suite of genes associated with vision and circadian rhythm are differentially expressed in blood tissue between nocturnal and diurnal raptors, possibly indicating adaptive expression change during the transition to nocturnality. CONCLUSIONS: Overall, raptor genomes show genomic signatures associated with the origin and maintenance of several specialized physiological and morphological features essential to be apex predators.


Asunto(s)
Evolución Biológica , Ritmo Circadiano/genética , Genoma , Conducta Predatoria/fisiología , Rapaces/genética , Adaptación Fisiológica/genética , Animales , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda