Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392388

RESUMEN

The concept of the brain's own time and space is central to many models and theories that aim to explain how the brain generates consciousness. For example, the temporo-spatial theory of consciousness postulates that the brain implements its own inner time and space for conscious processing of the outside world. Furthermore, our perception and cognition of time and space can be different from actual time and space. This study presents a mechanistic model of mutually connected processes that encode phenomenal representations of space and time. The model is used to elaborate the binding mechanism between two sets of processes representing internal space and time, respectively. Further, a stochastic version of the model is developed to investigate the interplay between binding strength and noise. Spectral entropy is used to characterize noise effects on the systems of interacting processes when the binding strength between them is varied. The stochastic modeling results reveal that the spectral entropy values for strongly bound systems are similar to those for weakly bound or even decoupled systems. Thus, the analysis performed in this study allows us to conclude that the binding mechanism is noise-resilient.

2.
Entropy (Basel) ; 23(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066824

RESUMEN

Random fluctuations in neuronal processes may contribute to variability in perception and increase the information capacity of neuronal networks. Various sources of random processes have been characterized in the nervous system on different levels. However, in the context of neural correlates of consciousness, the robustness of mechanisms of conscious perception against inherent noise in neural dynamical systems is poorly understood. In this paper, a stochastic model is developed to study the implications of noise on dynamical systems that mimic neural correlates of consciousness. We computed power spectral densities and spectral entropy values for dynamical systems that contain a number of mutually connected processes. Interestingly, we found that spectral entropy decreases linearly as the number of processes within the system doubles. Further, power spectral density frequencies shift to higher values as system size increases, revealing an increasing impact of negative feedback loops and regulations on the dynamics of larger systems. Overall, our stochastic modeling and analysis results reveal that large dynamical systems of mutually connected and negatively regulated processes are more robust against inherent noise than small systems.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda