Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Semin Cell Dev Biol ; 122: 28-36, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34238675

RESUMEN

Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.


Asunto(s)
Reprogramación Celular/fisiología , Miocitos Cardíacos/metabolismo , Medicina Regenerativa/métodos , Animales , Humanos , Ratones
2.
Pharmaceutics ; 13(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199356

RESUMEN

Due to their immune suppressive pharmacology, regenerative capacity, and immune privileged status, mesenchymal stromal cells (MSCs) are an attractive cell type to treat a variety of diseases. Genetically engineered MSCs are currently in non-clinical and clinical development for a wide range of applications including the delivery of pro-drugs and therapeutic proteins or modified to enhance their regenerative potential. Unmodified MSCs have been shown to have good safety profiles in clinical development. The introduction of exogenous transgenes introduces possible additional risks that need to be assessed in non-clinical studies prior to initiating clinical studies. The use of ex vivo non-viral genetic modification approaches potentially reduces the risks associated with viral vector transfection approaches, including the potential for cell transformation. This review provides an overview of the regulatory-compliant non-clinical proof-of-concept and safety studies required to take MSC-based gene therapy products from the bench to the clinic.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda