Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
IEEE J Sel Top Quantum Electron ; 29(4 Biophotonics)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193134

RESUMEN

Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 µm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.

2.
J Microsc ; 288(2): 117-129, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34028848

RESUMEN

We improved the three-dimensional spatial resolution of laser scanning transmission microscopy by exploiting the saturated absorption of dye molecules. The saturated absorption is induced by the high-intensity light irradiation and localises the signal within the centre of the focal spot. Our numerical calculation indicates that the spatial resolution in transmission imaging is significantly improved for both lateral and axial directions using nonlinear transmitted signals induced by saturated absorption. We experimentally demonstrated the improvement of the three-dimensional resolution by observing fine structures of stained rat kidney tissues, which were not able to be visualised by conventional laser scanning transmission microscopy.


Confocal laser scanning microscopy is a powerful technique for three-dimensional imaging to study structures in a specimen. The use of confocal pinhole provides three-dimensional spatial resolution in various types of optical microscopes, such as fluorescence, reflection and scattering. However, in transmission microscopy, the confocal pinhole cannot provide the same effect because the spatial information on the optical axial is not transferred in the imaging system. Therefore, the three-dimensional distribution of light absorbers cannot be observed by laser scanning transmission microscopy. In this paper, we propose the use of saturated absorption to image the three-dimensional distribution of light absorbers in a sample by laser scanning transmission microscopy. The saturated absorption is induced by the high-intensity light irradiation and occurs prominently at the centre of a focal spot. The information of the saturated absorption signal within the focal spot is transferred to the transmitted light, providing the capability of optical sectioning in transmission imaging. In our research, we theoretically and experimentally confirmed that light absorption by dye molecules is saturable at the high illumination intensity, and the saturated absorption signal can be extracted by harmonic demodulation. We obtained the images of a stained rat kidney tissue by selectively detecting the nonlinear transmission signals induced by saturable absorption of the dye molecules. We confirmed the high depth discrimination capability of our technique clearly visualised the fine structures in the specimen that cannot be observed by a conventional laser scanning absorption microscope.


Asunto(s)
Rayos Láser , Animales , Ratas , Fenómenos Químicos , Microscopía Confocal
3.
Proc Natl Acad Sci U S A ; 116(48): 24012-24018, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31732668

RESUMEN

Despite extensive interest, extracellular vesicle (EV) research remains technically challenging. One of the unexplored gaps in EV research has been the inability to characterize the spatially and functionally heterogeneous populations of EVs based on their metabolic profile. In this paper, we utilize the intrinsic optical metabolic and structural contrast of EVs and demonstrate in vivo/in situ characterization of EVs in a variety of unprocessed (pre)clinical samples. With a pixel-level segmentation mask provided by the deep neural network, individual EVs can be analyzed in terms of their optical signature in the context of their spatial distribution. Quantitative analysis of living tumor-bearing animals and fresh excised human breast tissue revealed abundance of NAD(P)H-rich EVs within the tumor, near the tumor boundary, and around vessel structures. Furthermore, the percentage of NAD(P)H-rich EVs is highly correlated with human breast cancer diagnosis, which emphasizes the important role of metabolic imaging for EV characterization as well as its potential for clinical applications. In addition to the characterization of EV properties, we also demonstrate label-free monitoring of EV dynamics (uptake, release, and movement) in live cells and animals. The in situ metabolic profiling capacity of the proposed method together with the finding of increasing NAD(P)H-rich EV subpopulations in breast cancer have the potential for empowering applications in basic science and enhancing our understanding of the active metabolic roles that EVs play in cancer progression.


Asunto(s)
Neoplasias de la Mama/patología , Vesículas Extracelulares/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Humanos , Modelos Logísticos , Redes Neurales de la Computación , Ratas
4.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562614

RESUMEN

Keratins are one of the main fluorophores of the skin. Keratinization disorders can lead to alterations in the optical properties of the skin. We set out to investigate a rare form of keratinopathic ichthyosis caused by KRT1 mutation with two different optical imaging methods. We used a newly developed light emitting diode (LED) based device to analyze autofluorescence signal at 405 nm excitation and diffuse reflectance at 526 nm in vivo. Mean autofluorescence intensity of the hyperkeratotic palmar skin was markedly higher in comparison to the healthy control (162.35 vs. 51.14). To further assess the skin status, we examined samples from affected skin areas ex vivo by nonlinear optical microscopy. Two-photon excited fluorescence and second-harmonic generation can visualize epidermal keratin and dermal collagen, respectively. We were able to visualize the structure of the epidermis and other skin changes caused by abnormal keratin formation. Taken together, we were able to show that such imaging modalities are useful for the diagnosis and follow-up of keratinopathic diseases.


Asunto(s)
Hiperqueratosis Epidermolítica , Queratinas , Preescolar , Humanos , Masculino , Microscopía Óptica no Lineal , Imagen Óptica , Piel
5.
Nano Lett ; 20(12): 8725-8732, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231075

RESUMEN

Whereas most of the reports on the nonlinear properties of micro- and nanostructures address the generation of distinct signals, such as second or third harmonic, here we demonstrate that the novel generation of dual output lasers recently developed for microscopy can readily increase the accessible parameter space and enable the simultaneous excitation and detection of multiple emission orders such as several harmonics and signals stemming from various sum and difference frequency mixing processes. This rich response, which in our case features 10 distinct emissions and encompasses the whole spectral range from the deep ultraviolet to the short-wave infrared region, is demonstrated using various nonlinear oxide nanomaterials while being characterized and simulated temporally and spectrally. Notably, we show that the response is conserved when the particles are embedded in biological media opening the way to novel biolabeling and phototriggering strategies.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Rayos Láser , Óxidos
6.
Nano Lett ; 19(9): 6157-6165, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31368312

RESUMEN

Understanding and controlling the electronic structure of nanomaterials is the key to tailoring their use in a wide range of practical applications. Despite this need, many important electronic states are invisible to conventional optical measurements and are typically identified indirectly based on their inferred impact on luminescence properties. This is especially common and important in the study of nanomaterial surfaces and their associated defects. Surface trap states play a crucial role in photophysical processes yet remain remarkably poorly understood. Here we demonstrate for the first time that broadband electronic sum frequency generation (eSFG) microspectroscopy can directly map the optically bright and dark states of nanoparticles, including the elusive below gap states. This new approach is applied to model cadmium selenide (CdSe) quantum dots (QDs), where the energies of surface trap states have eluded direct optical characterization for decades. Our eSFG measurements show clear signatures of electronic transitions both above the band gap, which we assign to previously reported one- and two-photon transitions associated with the CdSe core, as well as broad spectral signatures below the band gap that are attributed to surface states. In addition to the core states, this analysis reveals two distinct distributions of below gap states, providing the first direct optical measurement of both shallow and deep surface states on this system. Finally, chemical modification of the surfaces via oxidation results in the relative increase in the signals originating from the surface states. Overall, our eSFG experiments provide an avenue to directly map the entirety of the QD core and surface electronic structure, which is expected to open up opportunities to study how these materials are grown in situ and how surface states can be controlled to tune functionality.

7.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187392

RESUMEN

Three-dimensional culture systems and suitable substrates topographies demonstrated to drive stem cell fate in vitro by mechanical conditioning. For example, the Nichoid 3D scaffold remodels stem cells and shapes nuclei, thus promoting stem cell expansion and stemness maintenance. However, the mechanisms involved in force transmission and in biochemical signaling at the basis of fate determination are not yet clear. Among the available investigation systems, confocal fluorescence microscopy using fluorescent dyes enables the observation of cell function and shape at the subcellular scale in vital and fixed conditions. Contrarily, nonlinear optical microscopy techniques, which exploit multi-photon processes, allow to study cell behavior in vital and unlabeled conditions. We apply confocal fluorescence microscopy, coherent anti-Stokes Raman scattering (CARS), and second harmonic generation (SHG) microscopy to characterize the phenotypic expression of mesenchymal stem cells (MSCs) towards adipogenic and chondrogenic differentiation inside Nichoid scaffolds, in terms of nuclear morphology and specific phenotypic products, by comparing these techniques. We demonstrate that the Nichoid maintains a rounded nuclei during expansion and differentiation, promoting MSCs adipogenic differentiation while inhibiting chondrogenesis. We show that CARS and SHG techniques are suitable for specific estimation of the lipid and collagenous content, thus overcoming the limitations of using unspecific fluorescent probes.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Andamios del Tejido/química , Adipogénesis/fisiología , Animales , Células Cultivadas , Condrogénesis/fisiología , Colorantes Fluorescentes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microscopía Confocal/métodos , Ratas , Espectrometría Raman/métodos
8.
Nano Lett ; 18(2): 1366-1372, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29376374

RESUMEN

Ultrafast surface plasmon polariton (SPP) nanofocusing on a plasmonic metal tapered tip with femtosecond laser pulses enables background-free localized excitation beyond the diffraction limit. We demonstrate simultaneous nanofocusing of ultrafast SPP pulses at 440 and 800 nm, which were coupled with a common diffraction grating structure fabricated on an aluminum (Al) tapered tip, to the tip apex with a radius of ∼35 nm. We achieved selective coherent anti-Stokes Raman scattering (CARS) microscopy that combined an 800 nm (ω) SPP pump pulse, which achieves selective vibrational excitation by spectral focusing, and a 440 nm (2ω) SPP probe pulse. Raman intensity of this novel 2ω-CARS increased by a factor of 3.96 at the G-band and 4.00 at the 2D-band compared with that with ω-CARS for the monolayer graphene. The 2ω-CARS imaging method was applied for imaging a multiwalled carbon nanotube at the D-, G-, and 2D-bands. This dual-wavelength nanofocusing will open up new nanoscale microspectroscopy and optical excitation at the tip apex, such as sum frequency mixing, two-photon excitation.

9.
Proc Natl Acad Sci U S A ; 112(30): 9236-41, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170286

RESUMEN

Multiphoton microscopy is the current method of choice for in vivo deep-tissue imaging. The long laser wavelength suffers less scattering, and the 3D-confined excitation permits the use of scattered signal light. However, the imaging depth is still limited because of the complex refractive index distribution of biological tissue, which scrambles the incident light and destroys the optical focus needed for high resolution imaging. Here, we demonstrate a wavefront-shaping scheme that allows clear imaging through extremely turbid biological tissue, such as the skull, over an extended corrected field of view (FOV). The complex wavefront correction is obtained and directly conjugated to the turbid layer in a noninvasive manner. Using this technique, we demonstrate in vivo submicron-resolution imaging of neural dendrites and microglia dynamics through the intact skulls of adult mice. This is the first observation, to our knowledge, of dynamic morphological changes of microglia through the intact skull, allowing truly noninvasive studies of microglial immune activities free from external perturbations.


Asunto(s)
Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Neuroimagen/métodos , Cráneo/fisiología , Animales , Proteínas Bacterianas/química , Dendritas/fisiología , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Ratones , Microglía/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Nefelometría y Turbidimetría , Neuronas/fisiología , Distribución Normal , Óptica y Fotónica , Fantasmas de Imagen , Dispersión de Radiación
10.
J Microsc ; 267(3): 397-408, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28594468

RESUMEN

Second-harmonic generation (SHG) microscopy has gained popularity because of its ability to perform submicron, label-free imaging of noncentrosymmetric biological structures, such as fibrillar collagen in the extracellular matrix environment of various organs with high contrast and specificity. Because SHG is a two-photon coherent scattering process, it is difficult to define a point spread function (PSF) for this modality. Hence, compared to incoherent two-photon processes like two-photon fluorescence, it is challenging to apply the various PSF-engineering methods to improve the spatial resolution to be close to the diffraction limit. Using a synthetic PSF and application of an advanced maximum likelihood estimation (AdvMLE) deconvolution algorithm, we demonstrate restoration of the spatial resolution in SHG images to that closer to the theoretical diffraction limit. The AdvMLE algorithm adaptively and iteratively develops a PSF for the supplied image and succeeds in improving the signal to noise ratio (SNR) for images where the SHG signals are derived from various sources such as collagen in tendon and myosin in heart sarcomere. Approximately 3.5 times improvement in SNR is observed for tissue images at depths of up to ∼480 nm, which helps in revealing the underlying helical structures in collagen fibres with an ∼26% improvement in the amplitude contrast in a fibre pitch. Our approach could be adapted to noisy and low resolution modalities such as micro-nano CT and MRI, impacting precision of diagnosis and treatment of human diseases.


Asunto(s)
Funciones de Verosimilitud , Microscopía/métodos , Algoritmos , Animales , Pollos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Ratones , Microscopía/normas , Miocardio , Tendones
11.
Proc Natl Acad Sci U S A ; 111(43): 15304-9, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313045

RESUMEN

Rapid intraoperative assessment of breast excision specimens is clinically important because up to 40% of patients undergoing breast-conserving cancer surgery require reexcision for positive or close margins. We demonstrate nonlinear microscopy (NLM) for the assessment of benign and malignant breast pathologies in fresh surgical specimens. A total of 179 specimens from 50 patients was imaged with NLM using rapid extrinsic nuclear staining with acridine orange and intrinsic second harmonic contrast generation from collagen. Imaging was performed on fresh, intact specimens without the need for fixation, embedding, and sectioning required for conventional histopathology. A visualization method to aid pathological interpretation is presented that maps NLM contrast from two-photon fluorescence and second harmonic signals to features closely resembling histopathology using hematoxylin and eosin staining. Mosaicking is used to overcome trade-offs between resolution and field of view, enabling imaging of subcellular features over square-centimeter specimens. After NLM examination, specimens were processed for standard paraffin-embedded histology using a protocol that coregistered histological sections to NLM images for paired assessment. Blinded NLM reading by three pathologists achieved 95.4% sensitivity and 93.3% specificity, compared with paraffin-embedded histology, for identifying invasive cancer and ductal carcinoma in situ versus benign breast tissue. Interobserver agreement was κ = 0.88 for NLM and κ = 0.89 for histology. These results show that NLM achieves high diagnostic accuracy, can be rapidly performed on unfixed specimens, and is a promising method for intraoperative margin assessment.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Microscopía/métodos , Dinámicas no Lineales , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Femenino , Humanos , Invasividad Neoplásica , Sensibilidad y Especificidad
12.
Proc Natl Acad Sci U S A ; 111(42): 15196-201, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288764

RESUMEN

Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca(2+) release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca(2+) release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca(2+) release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca(2+) release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca(2+) transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca(2+) release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca(2+) release, resulting in Ca(2+) sparks. The occurrence of tubule-driven depolarizations and Ca(2+) sparks may contribute to the arrhythmic burden in heart failure.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Células Musculares/citología , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Animales , Señalización del Calcio/fisiología , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Masculino , Contracción Miocárdica/fisiología , Ratas , Ratas Wistar , Retículo Sarcoplasmático/metabolismo
13.
Exp Eye Res ; 146: 137-144, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26677758

RESUMEN

Two-photon microscopy (TPM) allows high contrast imaging at a subcellular resolution scale. In this work, the microscopy technique was applied to visualize corneal structures in two mouse models (BALB/c and B6.Cg-Tg(Thy1-YFP)16Jrs/J) in vivo. In particular, the transgenic Thy1-YFP mice expressing the yellow fluorescent protein (YFP) in all motor and sensory neurons had been used for investigating the nerve fiber density in healthy and streptozotocin-diabetic mice. This model is clinically relevant since patients suffering from diabetes mellitus have a high risk to develop small fiber neuropathy. Nonlinear laser scanning microscopy displayed a reduction of nerve fiber density in streptozotocin-diabetic versus healthy mice and confirmed data obtained by confocal laser scanning microscopy (CLSM). In recent years, corneal CLSM was proved to be an appropriate non-invasive tool for an early diagnosis of diabetic neuropathy. Nevertheless, validation of the CLSM method for the clinical routine is currently a matter of investigation and requires confirmation by further studies and complementary techniques. Thus, the present study provides further evidence of corneal confocal microscopy as a promising technique for non-invasive detection of diabetic neuropathy. Information derived from these experiments may become clinically relevant and help to develop new drugs for treatment of diabetic neuropathy.


Asunto(s)
Córnea/patología , Diabetes Mellitus Experimental , Retinopatía Diabética/diagnóstico , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Animales , Retinopatía Diabética/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Reproducibilidad de los Resultados
14.
J Microsc ; 264(2): 175-181, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27229847

RESUMEN

We demonstrate for the first time the imaging of unstained breast tissue biopsies using third-harmonic generation (THG) microscopy. As a label-free imaging technique, THG microscopy is compared to phase contrast and polarized light microscopy which are standard imaging methods for breast tissues. A simple feature detection algorithm is applied to detect tumour-associated lymphocyte rich regions in unstained breast biopsy tissue and compared with corresponding regions identified by a pathologist from bright-field images of hematoxylin and eosin stained breast tissue. Our results suggest that THG imaging holds potential as a complementary technique for analysing breast tissue biopsies.


Asunto(s)
Biopsia , Mama/diagnóstico por imagen , Mama/patología , Microscopía/métodos , Femenino , Humanos , Análisis de Matrices Tisulares
15.
Proc Natl Acad Sci U S A ; 110(46): 18391-6, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24173034

RESUMEN

Optical microscopy has played a critical role for discovery in biomedical sciences since Hooke's introduction of the compound microscope. Recent years have witnessed explosive growth in optical microscopy tools and techniques. Information in microscopy is garnered through contrast mechanisms, usually absorption, scattering, or phase shifts introduced by spatial structure in the sample. The emergence of nonlinear optical contrast mechanisms reveals new information from biological specimens. However, the intensity dependence of nonlinear interactions leads to weak signals, preventing the observation of high-speed dynamics in the 3D context of biological samples. Here, we show that for second harmonic generation imaging, we can increase the 3D volume imaging speed from sub-Hertz speeds to rates in excess of 1,500 volumes imaged per second. This transformational capability is possible by exploiting coherent scattering of second harmonic light from an entire specimen volume, enabling new observational capabilities in biological systems.


Asunto(s)
Holografía/instrumentación , Holografía/métodos , Manejo de Especímenes/métodos , Animales , Ratones , Microscopía Confocal/métodos , Músculo Esquelético/citología
16.
Microsc Microanal ; 22(3): 589-98, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27329310

RESUMEN

There has been increasing interest in second harmonic generation (SHG) imaging approaches for the investigation of atherosclerosis due to the deep penetration and three-dimensional sectioning capabilities of the nonlinear optical microscope. Atherosclerosis involves remodeling or alteration of the collagenous framework in affected vessels. The disease is often characterized by excessive collagen deposition and altered collagen organization. SHG has the capability to accurately characterize collagen structure, which is an essential component in understanding atherosclerotic lesion development and progression. As a structure-based imaging modality, SHG is most impactful in atherosclerosis evaluation in conjunction with other, chemically specific nonlinear optics (NLO) techniques to identify additional components of the lesion. These include the use of coherent anti-Stokes Raman scattering and two-photon excitation fluorescence for studying atherosclerosis burden, and application of stimulated Raman scattering to image cholesterol crystals. However, very few NLO studies have attempted to quantitate differences in control versus atherosclerotic states or to correlate the application to clinical situations. This review highlights the potential of SHG imaging to directly and indirectly describe atherosclerosis as a pathological condition.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Microscopía , Colágeno , Humanos , Espectrometría Raman
17.
Microsc Microanal ; 22(5): 1072-1083, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27619334

RESUMEN

In this work, we report that polarization second harmonic generation (PSHG) microscopy, commonly used in biomedical imaging, can quantitatively discriminate naturally aged from fresh starch-based glues used for conservation or restoration of paintings, works of art on paper, and books. Several samples of fresh and aged (7 years) flour and starch pastes were investigated by use of PSHG. In these types of adhesives, widely used in cultural heritage conservation, second harmonic generation (SHG) contrast originates primarily from the starch granules. It was found that in aged glues, the starch SHG effective orientation (SHG angle, θ) shifts to significantly higher values in comparison to the fresh granules. This shift is attributed to the different degree of granule hydration between fresh and aged adhesives. Thus noninvasive high-resolution nonlinear scattering can be employed to detect and quantify the degree of deterioration of restoration adhesives and to provide guidance toward future conservation treatments.

18.
Microsc Microanal ; 22(4): 803-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27492283

RESUMEN

We demonstrate that the second-Stokes output from a diamond Raman laser, pumped by a femtosecond Ti:Sapphire laser, can be used to efficiently excite red-emitting dyes by two-photon excitation at 1,080 nm and beyond. We image HeLa cells expressing red fluorescent protein, as well as dyes such as Texas Red and Mitotracker Red. We demonstrate the potential for simultaneous two-color, two-photon imaging with this laser by using the residual pump beam for excitation of a green-emitting dye. We demonstrate this for the combination of Alexa Fluor 488 and Alexa Fluor 568. Because the Raman laser extends the wavelength range of the Ti:Sapphire laser, resulting in a laser system tunable to 680-1,200 nm, it can be used for two-photon excitation of a large variety and combination of dyes.

19.
J Struct Biol ; 189(2): 105-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25486610

RESUMEN

Nonlinear optical processes have found widespread applications in fields ranging from fundamental physics to biomedicine. In this study, we attempted to evaluate cell activation by using the Third Harmonic Generation (THG) imaging microscopy as a new diagnostic tool. The BV-2 microglia cell line with or without activation by lipopolysaccharide was chosen as a representative biological model. The results showed that THG imaging could discriminate between the control versus activated state of BV-2 cells not only as to THG signal intensity but also as to THG signal area, while verifying once more that the majority of the intracellular detected signal corresponds to lipid bodies. Since THG imaging is a real time, non-destructive modality and does not require any prior cell processing and staining, the results presented here provide an important tool for normal versus activated cell discrimination, which could be proved very useful in the study of inflammation.


Asunto(s)
Gotas Lipídicas/ultraestructura , Microglía/ultraestructura , Animales , Línea Celular , Ratones , Microglía/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica
20.
J Struct Biol ; 191(2): 224-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26057347

RESUMEN

Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.


Asunto(s)
Copépodos/ultraestructura , Miofibrillas/ultraestructura , Imagen Óptica/métodos , Estrés Fisiológico , Animales , Copépodos/fisiología , Miofibrillas/fisiología , Sarcómeros/ultraestructura , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda