Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Evol Dev ; 25(2): 137-152, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36755467

RESUMEN

Novel phenotypes can come about through a variety of mechanisms including standing genetic variation from a founding population. Cave animals are an excellent system in which to study the evolution of novel phenotypes such as loss of pigmentation and eyes. Asellus aquaticus is a freshwater isopod crustacean found in Europe and has both a surface and a cave ecomorph which vary in multiple phenotypic traits. An orange eye phenotype was previously revealed by F2 crosses and backcrosses to the cave parent within two examined Slovenian cave populations. Complete loss of pigmentation, both in eye and body, is epistatic to the orange eye phenotype and therefore the orange eye phenotype is hidden within the cave populations. Our goal was to investigate the origin of the orange eye alleles within the Slovenian cave populations by examining A. aquaticus individuals from Slovenian and Romanian surface populations and Asellus aquaticus infernus individuals from a Romanian cave population. We found orange eye individuals present in lab raised surface populations of A. aquaticus from both Slovenia and Romania. Using a mapping approach with crosses between individuals of two surface populations, we found that the region known to be responsible for the orange eye phenotype within the two previously examined Slovenian cave populations was also responsible within both the Slovenian and the Romanian surface populations. Complementation crosses between orange eye Slovenian and orange eye Romanian surface individuals suggest that the same gene is responsible for the orange eye phenotype in both surface populations. Additionally, we observed a low frequency phenotype of eye loss in crosses generated between the two surface populations and also in the Romanian surface population. Finally, in a cave population from Romania, A. aquaticus infernus, we found that the same region is also responsible for the orange eye phenotype as the Slovenian cave populations and the Slovenian and Romanian surface populations. Therefore, we present evidence that variation present in the cave populations could originate from standing variation present in the surface populations and/or transgressive hybridization of different surface phylogenetic lineages rather than de novo mutations.


Asunto(s)
Isópodos , Animales , Filogenia , Fenotipo , Variación Genética , Agua Dulce , Cuevas
2.
Clin Genet ; 104(2): 245-250, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37125481

RESUMEN

Glycosylphosphatidylinositol-anchored proteins are involved in multiple physiological processes and the initial stage of their biosynthesis is mediated by PIGA, PIGC, PIGH, PIGP, PIGQ, PIGY, and DMP2 genes, which have been linked to a wide spectrum of phenotypes depending on the gene damaged. To date, the PIGP gene has only been related to Developmental and Epileptic Encephalopathy 55 (MIM#617599) in just seven patients. A detailed medical history was performed in two affected siblings with a multiple malformation syndrome. Genetic testing was performed using whole-exome sequencing. One patient presented dysmorphic features, congenital anomalies, hypotonia and epileptic encephalopathy as described in PIGA, PIGQ and PIGY deficiencies. The other one was a fetus with a severe malformation disorder at 17 weeks of gestation whose pregnancy was interrupted. Both were compound heterozygous of pathogenic variants in PIGP gene: NM_153682.3:c.2 T > C(p.?) and a 136 Kb deletion (GRCh37/hg19 21q22.13(chr21:38329939-38 466 066)×1) affecting the entire PIGP gene. Our results extend the clinical phenotype associated to PIGP gene and propose to include it as a novel cause of Multiple Congenital Anomalies-Hypotonia-Seizures syndrome.


Asunto(s)
Anomalías Múltiples , Epilepsia Generalizada , Epilepsia , Hexosiltransferasas , Anomalías Musculoesqueléticas , Humanos , Convulsiones/genética , Convulsiones/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Fenotipo , Proteínas de la Membrana/genética , Hexosiltransferasas/genética
3.
Neurol Sci ; 44(12): 4491-4498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37452996

RESUMEN

Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.3269G > A, and c.2648G > T, which are confirmed and segregated by Sanger sequencing. Consequently, intron 12's highly conserved splice donor location is disrupted by the pathogenic c.1434 + 1G > A variation, most likely causing the protein to degrade through nonsense-mediated decay (NMD). Subsequently, a premature stop codon is thus generated at amino acid 1090 of the protein as a result of the pathogenic c.3269G > A; p.W1090* variation, resulting in NMD or truncated protein production. Lastly, the missense mutation c.2648G > T; p.G883V can play a critical role in the interplay of functional domains. This study introduces recurrent urinary tract infections for the first time, broadening the phenotypic range of IHPRF1 syndrome in addition to the genotypic spectrum. This trait may result from insufficient bladder emptying, which may be related to the NALCN channelosome's function in background Na + conduction. This work advances knowledge about the molecular genetic underpinnings of IHPRF1 and introduces a novel phenotype through the widespread use of whole exome sequencing.


Asunto(s)
Canales de Sodio , Infecciones Urinarias , Humanos , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales Iónicos/genética , Proteínas de la Membrana/genética , Fenotipo , Mutación Missense , Síndrome , Infecciones Urinarias/genética , Mutación/genética
4.
Am J Bot ; 108(3): 402-410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33608867

RESUMEN

PREMISE: In addition to its role as the male gamete, pollen is often used as a food reward for pollinators. Roughly 20,000 species of angiosperms are strictly pollen-rewarding, providing no other rewards to their pollinators. However, the influence of this strategy on pollinator behavior and plant reproduction is poorly understood, especially relative to the nectar-reward strategy. We performed a field experiment using the strictly pollen-rewarding Lupinus argenteus to explore how the absence of nectar influences pollinator behavior and plant reproduction. METHODS: We added artificial nectar to Lupinus argenteus individuals to simulate a phenotype that would reward pollinators with both nectar and pollen. We compared bee pollinator behavior, via direct observation, and female reproduction between nectar-added and nectarless control plants. RESULTS: Bees exhibited behavioral responses to the novel reward, collecting nectar as well as pollen and spending 27% longer per flower. Pollen transfer increased with flower visit duration. However, plants in the study population were not pollen-limited; consequently, the observed changes in pollinator behavior did not result in changes in female components of plant reproduction. CONCLUSIONS: The addition of nectar to pollen-rewarding plants resulted in modest increases in per-flower pollinator visit duration and pollen transfer, but had no effect on reproduction because, at the place and time the experiment was conducted, plants were not pollen-limited. These results suggest that a pollen-only reward strategy may allow plants that are visited by pollen foragers to minimize some costs of reproduction by eliminating investment in other rewards, such as nectar, without compromising female plant fitness.


Asunto(s)
Lupinus , Néctar de las Plantas , Animales , Abejas , Femenino , Flores , Humanos , Masculino , Polen , Polinización , Reproducción , Recompensa
5.
J Dairy Sci ; 104(8): 8947-8958, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33985781

RESUMEN

A group of milk components that has shown potential to be predicted with milk spectra is milk minerals. Milk minerals are important for human health and cow health. Having an inexpensive and fast way to measure milk mineral concentrations would open doors for research, herd management, and selective breeding. The first aim of this study was to predict milk minerals with infrared milk spectra. Additionally, milk minerals were predicted with infrared-predicted fat, protein, and lactose content. The second aim was to perform a genetic analysis on infrared-predicted milk minerals, to identify QTL, and estimate variance components. For training and validating a multibreed prediction model for individual milk minerals, 264 Danish Jersey cows and 254 Danish Holstein cows were used. Partial least square regression prediction models were built for Ca, Cu, Fe, K, Mg, Mn, Na, P, Se, and Zn based on 80% of the cows, selected randomly. Prediction models were externally validated with 8 herds based on the remaining 20% of the cows. The prediction models were applied on a population of approximately 1,400 Danish Holstein cows with 5,600 infrared spectral records and 1,700 Danish Jersey cows with 7,200 infrared spectral records. Cows from this population had 50k imputed genotypes. Prediction accuracy was good for P and Ca, with external R2 ≥ 0.80 and a relative prediction error of 5.4% for P and 6.3% for Ca. Prediction was moderately good for Na with an external R2 of 0.63, and a relative error of 18.8%. Prediction accuracies of milk minerals based on infrared-predicted fat, protein, and lactose content were considerably lower than those based on the infrared milk spectra. This shows that the milk infrared spectrum contains valuable information on milk minerals, which is currently not used. Heritability for infrared-predicted Ca, Na, and P varied from low (0.13) to moderate (0.36). Several QTL for infrared-predicted milk minerals were observed that have been associated with gold standard milk minerals previously. In conclusion, this study has shown infrared milk spectra were good at predicting Ca, Na, and P in milk. Infrared-predicted Ca, Na, and P had low to moderate heritability estimates.


Asunto(s)
Lactancia , Leche , Animales , Bovinos/genética , Dinamarca , Femenino , Lactosa , Minerales
6.
J Assist Reprod Genet ; 37(8): 1837-1847, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32524331

RESUMEN

PURPOSE: We aimed to identify novel variants in TUBB8 and corresponding new abnormal phenotypes in oocytes/fertilization/ embryonic development responsible for female infertility. METHODS: Sanger sequencing of TUBB8 was performed in infertile women with abnormalities in oocyte maturation or embryonic development. The effects of the variants were evaluated in patients' oocytes by morphological observations and immunofluorescence. RESULTS: We identified 34 novel variants of TUBB8 in 51 patients who were diagnosed with abnormalities in oocyte maturation or early embryonic development. We found a novel phenotype in which large polar bodies were present in three independent patients possibly associated with a recurrent variant. Moreover, we identified a novel type of TUBB8 variant consisting of an in-frame deletion-insertion, which has not been previously reported. CONCLUSIONS: Our present study identified 34 novel variants in TUBB8 in 51 patients. These patients show oocyte maturation arrest, oocytes with large polar body, fertilization failure, early embryonic arrest or embryonic implantation failure. These results expand the kinds of variants and phenotypic spectrum of TUBB8 variants with regard to female infertility.


Asunto(s)
Desarrollo Embrionario/genética , Infertilidad Femenina/genética , Oogénesis/genética , Tubulina (Proteína)/genética , Adulto , Implantación del Embrión/genética , Femenino , Humanos , Infertilidad Femenina/patología , Mutación/genética , Oocitos/crecimiento & desarrollo , Fenotipo , Cuerpos Polares/patología , Embarazo
7.
CNS Neurosci Ther ; 30(4): e14529, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38013626

RESUMEN

INTRODUCTION: Hereditary spastic paraplegias (HSPs) comprise a group of neurodegenerative disorders characterized by progressive degeneration of upper motor neurons. Homozygous or compound heterozygous variants in COQ4 have been reported to cause primary CoQ10 deficiency-7 (COQ10D7), which is a mitochondrial disease. AIMS: We aimed to screened COQ4 variants in a cohort of HSP patients. METHODS: A total of 87 genetically unidentified HSP index patients and their available family members were recruited. Whole exome sequencing (WES) was performed in all probands. Functional studies were performed to identify the pathogenicity of those uncertain significance variants. RESULTS: In this study, five different COQ4 variants were identified in three Chinese HSP pedigrees and two variants were novel, c.87dupT (p.Arg30*), c.304C>T (p.Arg102Cys). More importantly, we firstly described two early-onset pure HSP caused by COQ4 variants. Functional studies in patient-derived fibroblast lines revealed a reduction cellular CoQ10 levels and the abnormal mitochondrial structure. CONCLUSIONS: Our findings revealed that bilateral variants in the COQ4 gene caused HSP predominant phenotype, expanding the phenotypic spectrum of the COQ4-related disorders.


Asunto(s)
Enfermedades Mitocondriales , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Mutación/genética , Fenotipo , Linaje , Proteínas Mitocondriales/genética
8.
Mol Genet Genomic Med ; 12(2): e2408, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404251

RESUMEN

BACKGROUND: TNRC6B deficiency syndrome, also known as global developmental delay with speech and behavioral abnormalities (MIM 619243), is a rare autosomal dominant genetic disease mainly characterized by facial dysmorphism, developmental delay/intellectual disability (DD/ID), speech and language delay, fine and motor delay, attention deficit and hyperactivity disorder (ADHD), and variable behavioral abnormalities. It is caused by heterozygous variant in the TNRC6B gene (NM_001162501.2, MIM 610740), which encodes the trinucleotide repeat-containing adaptor 6B protein. METHODS: In this study, two Chinese patients with TNRC6B deficiency syndrome were recruited, and genomic DNA extraction from peripheral blood leukocytes of these parents and their family members was extracted for whole-exome sequencing and Sanger sequencing. RESULTS: Here, we report two unrelated Chinese patients diagnosed with TNRC6B deficiency syndrome caused by novel de novo likely pathogenic or pathogenic TNRC6B variants c.335C>T (p.Pro112Leu) and c.1632delC (p.Leu546fs*63), which expands the genetic spectrum of TNRC6B deficiency syndrome. The clinical features of the patients were DD/ID, delayed speech, ADHD, behavioral abnormalities, short stature, low body weight, café-au-lait spots, metabolic abnormalities, and facial dysmorphism including coarse facial features, sparse hair, frontal bossing, hypertelorism, amblyopia, strabismus, and downslanted palpebral fissures, which expands the phenotype spectrum associated with TNRC6B deficiency syndrome. CONCLUSION: This study expands the genotypic and phenotypic spectrum of TNRC6B deficiency syndrome. Our findings indicate that patients with TNRC6B deficiency syndrome should be monitored for growth and metabolic problems and therapeutic strategies should be developed to address these problems. Our report also suggests the clinical diversity of TNRC6B deficiency syndrome.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Proteínas de Unión al ARN , Humanos , Peso Corporal , Manchas Café con Leche/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Proteínas de Unión al ARN/genética , Habla
9.
Int J Dev Neurosci ; 84(4): 305-313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566307

RESUMEN

Segawa syndrome is a rare autosomal recessive form of dopa-responsive dystonia resulting from TH gene dysfunction. Patients typically exhibit symptoms such as generalized dystonia, rigidity, tremors, infantile Parkinsonism, and pseudo-spastic paraplegia. Levodopa is often an effective treatment. Due to its rarity, high heterogeneity, and poorly understood pathological mutation and phenotype spectrums, as well as genotype-phenotype and genotype-treatment outcome correlations, Segawa syndrome poses diagnostic and therapeutic challenges. In our study, through clinical and molecular analyses of three Chinese Segawa patients, we re-evaluated the pathogenicity of a TH mutation (c.880G>C;p.G294R) previously categorized as "Conflicting classifications of pathogenicity" in ClinVar. Also, we summarized the clinical phenotypes of all reported Segawa syndrome cases until 2023 and compared them with our patients. We identified a novel phenotype, "cafe-au-lait macules," not previously observed in Segawa patients. Additionally, we discussed the correlation between specific genotypes and phenotypes, as well as genotypes and treatment outcomes of our three cases. Our findings aim to enhance the understanding of Segawa syndrome, contributing to improved diagnosis and treatment approaches in the future.


Asunto(s)
Trastornos Distónicos , Mutación , Tirosina 3-Monooxigenasa , Niño , Preescolar , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , China , Trastornos Distónicos/genética , Trastornos Distónicos/terapia , Pueblos del Este de Asia , Heterocigoto , Levodopa/uso terapéutico , Fenotipo , Resultado del Tratamiento , Tirosina 3-Monooxigenasa/genética
10.
Front Neurol ; 15: 1359479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426167

RESUMEN

Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.

11.
J Neurol ; 269(12): 6476-6482, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35947152

RESUMEN

OBJECTIVES: The term hereditary spastic paraplegia comprises an ever-expanding array of neurological disorders with distinct aetiologies. Spastic paraplegia gene 39 is one of the many genetically defined types with features of other organs and neurological systems in addition to paraspasticity. We describe a large kindred with a novel clinical phenotype as, in addition to spastic paraplegia, affected subjects suffered from a prominent cerebellar oculomotor dysfunction with two hitherto undescribed mutations of PNPLA6. METHODS: Three of five genetically tested family members of a large kindred were affected by spastic gait and a unique and prominent cerebellar oculomotor dysfunction. Further clinical, imaging, laboratory and videonystagmographic data were analyzed. Genetic analysis was done using next-generation sequencing. RESULTS: The most salient clinical feature, in addition to paraspasticity, in three of five subjects was cerebellar oculomotor dysfunction with an upbeating nystagmus provoked by downward gaze. Genetic analysis revealed two hitherto unknown sequence variants in the PNPLA6 gene, a splice-site variant c.1635 + 3G > T and a missense variant c.3401A > T, p.(Asp1134Val). In addition to cerebellar oculomotor dysfunction, compound-heterozygous siblings presented with paraspasticity and a moderate hypogonadotropic hypogonadism in the female. A paternal uncle being homozygous for the splice-site variant of PNPLA6 presented with increased lower limb reflexes and an unstable gait. Treatment with 4-aminopyridine, a potassium channel blocker, lead to meaningful improvement of clinical symptoms. CONCLUSIONS: The unique and prominent cerebellar ocular motor disorder in our family broadens the spectrum of clinical phenotypes associated with variations in the PNLA6 gene. The finding of paraspasticity with cerebellar oculomotor dysfunction alongside inconspicuous brainstem imaging may raise suspicion of complex HSP with PNPLA6 mutations.


Asunto(s)
Enfermedades Cerebelosas , Paraplejía Espástica Hereditaria , Femenino , Humanos , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética , Fenotipo , Paraplejía/genética , Mutación/genética , Linaje
12.
Mol Genet Genomic Med ; 8(10): e1417, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33073934

RESUMEN

BACKGROUND: Tricho-rhino-phalangeal syndrome (TRPS) is a rare autosomal dominant disorder characterized by craniofacial and skeletal malformations including short stature, thin scalp hair, sparse lateral eyebrows, a pear-shaped nose, and cone-shaped epiphyses. This condition is caused by haploinsufficiency or dominant-negative effect of the TRPS1 gene. METHODS: In this study, we analyzed the clinical and genetic data of five unrelated TRPS patients. They were suspected of having TRPS on the basis of clinical and radiological features including typical hair and facial features, as well as varying degrees of skeletal abnormalities. Next-generation sequencing was performed to identify variants of the TRPS1 gene in the five patients. RESULTS: In patient 1, we found a novel mutation at c.1338C>A (p.Tyr446*) (de novo). Patient 2 had a novel phenotype of hydrocephaly and Arnold-Chiari syndrome and we also found a maternally inherited novel mutation at c.2657C>A (p.Ser886*). Patient 3 had a de novo novel mutation at c.2726G>C (p.Cys909Ser) leading to more severe phenotypes. Patient 4 had a paternally inherited known mutation at c.2762G>A (p.Arg921Gln). Patient 5 with a novel phenotype of hepatopathy had a novel deletion at [GRCh37] del(8)(q23.3-q24.11) chr8:g.116,420,724-119,124,058 (over 2,700 kb). In addition, the patient 3 who harboring missense variants in the GATA binding domain of TRPS1 showed more severe craniofacial and skeletal phenotypes. CONCLUSIONS: We describe four novel mutations and two novel phenotypes in five patients. The mutational and phenotypic spectrum of TRPS is broadened by our study on TRPS mutations. Our results reveal the significance of molecular analysis of TRPS1 for improving the clinical diagnosis of TRPS.


Asunto(s)
Síndrome de Langer-Giedion/genética , Mutación , Proteínas Represoras/genética , Sitios de Unión , Niño , Preescolar , Femenino , Factores de Transcripción GATA/metabolismo , Humanos , Síndrome de Langer-Giedion/patología , Masculino , Fenotipo , Proteínas Represoras/química , Proteínas Represoras/metabolismo
13.
Mol Genet Genomic Med ; 8(12): e1518, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33002343

RESUMEN

BACKGROUND: The enzyme NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the methylation of cytosine to 5-methylcytosine (m5C) at position 34 of tRNA(Leu; CAA) precursors containing introns that play a vital role in spindle assembly during mitosis and chromosome segregation. Biallelic variants in the NSUN2 gene cause a rare intellectual disability that has been identified only in a few Middle Eastern patients. Affected individuals usually have other deformities, including developmental delay, short stature, microcephaly, and facial dysmorphism. The aim of this study was to identify the genetic cause of three female patients from a Chinese pedigree, who presented with similar phenotype consisting of the above clinical features. METHODS: Whole-exome sequencing (WES) was used to screen for causal variants in the genome, and the candidate variants were subsequently verified using Sanger sequencing. RESULTS: WES revealed a previously unreported homozygous nonsense variant (NM_017755.5: c.1004T>A, p.Leu335*) in exon 9 of NSUN2, which was consistent with the clinical phenotype of the patients and co-segregated with the disease in their family. A comparison of this phenotype with that of patients in published reports uncovered several novel clinical features related to NSUN2 variations, including feeding difficulties, slender hands and fingers, severely restricted finger mobility, hallux valgus, varus foot, and elevated α-hydroxybutyrate dehydrogenase (HBDH). CONCLUSIONS: These are the first findings of a non-consanguineous Chinese pedigree with a homozygous NSUN2 variant. We expanded the phenotypic spectrum associated with NSUN2 variations.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , Preescolar , Codón sin Sentido , Anomalías Craneofaciales/patología , Femenino , Genes Recesivos , Homocigoto , Humanos , Discapacidad Intelectual/patología , Metiltransferasas/química , Microcefalia/patología , Linaje , Dominios Proteicos , Síndrome , Adulto Joven
14.
Front Neurol ; 10: 555, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191442

RESUMEN

Mutations in the PARK2 gene have been implicated in the pathogenesis of early-onset Parkinson's disease. We present a case of movement disorder in a 4-year-old child from consanguineous parents and with a family history of Dopamine responsive dystonia, who was diagnosed with early-onset Parkinson's disease based on initial identification of a pathogenic PARK2 mutation. However, the evolution of the child's clinical picture was unusually rapid, with a preponderance of pyramidal rather than extrapyramidal symptoms, leading to re-investigation of the case with further imaging and genetic sequencing. Interestingly, a second homozygous mutation in the FA2H gene, implicated in Hereditary spastic paraplegia, was revealed, appearing to have contributed to the novel phenotype observed, and highlighting a potential interaction between the two mutated genes.

15.
Front Genet ; 4: 191, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143143

RESUMEN

Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda