Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.292
Filtrar
Más filtros

Publication year range
1.
Cell ; 184(15): 3998-4015.e19, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157302

RESUMEN

Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.


Asunto(s)
Antígeno CTLA-4/metabolismo , Retroalimentación Fisiológica , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos CD28/metabolismo , Proliferación Celular , Células Dendríticas/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Interleucina-2/metabolismo , Ligandos , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Microambiente Tumoral
2.
Immunity ; 55(6): 1082-1095.e5, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35588739

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) enzymes and are ubiquitously used for their anti-inflammatory properties. However, COX inhibition alone fails to explain numerous clinical outcomes of NSAID usage. Screening commonly used NSAIDs in primary human and murine myeloid cells demonstrated that NSAIDs could be differentiated by their ability to induce growth/differentiation factor 15 (GDF15), independent of COX specificity. Using genetic and pharmacologic approaches, NSAID-mediated GDF15 induction was dependent on the activation of nuclear factor erythroid 2-related factor 2 (NRF2) in myeloid cells. Sensing by Cysteine 151 of the NRF2 chaperone, Kelch-like ECH-associated protein 1 (KEAP1) was required for NSAID activation of NRF2 and subsequent anti-inflammatory effects both in vitro and in vivo. Myeloid-specific deletion of NRF2 abolished NSAID-mediated tissue protection in murine models of gout and endotoxemia. This highlights a noncanonical NRF2-dependent mechanism of action for the anti-inflammatory activity of a subset of commonly used NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Factor 2 Relacionado con NF-E2 , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Prescripciones , Prostaglandina-Endoperóxido Sintasas
3.
Mol Cell ; 83(17): 3188-3204.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683611

RESUMEN

Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKß, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.


Asunto(s)
FN-kappa B , Transducción de Señal , FN-kappa B/genética , Quinasa I-kappa B/genética , Proteínas Serina-Treonina Quinasas/genética , Mitocondrias/genética
4.
Immunity ; 50(2): 348-361.e4, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30737145

RESUMEN

NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs in vivo. Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Timocitos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Quinasa I-kappa B/genética , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Timocitos/citología , Timocitos/efectos de los fármacos , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
5.
Proc Natl Acad Sci U S A ; 121(40): e2318687121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39312667

RESUMEN

The CD4 T cell, when engineered with a chimeric antigen receptor (CAR) containing specific intracellular domains, has been transformed into a zero-order drug-delivery platform. This introduces the capability of prolonged, disease-specific engineered protein biologics production, at the disease site. Experimental findings demonstrate that CD4 T cells offer a solution when modified with a CAR that includes 4-1BB but excludes CD28 intracellular domain. In this configuration, they achieve ~3X transduction efficiency of CD8 T cells, ~2X expansion rates, generating ~5X more biologic, and exhibit minimal cytolytic activity. Cumulatively, this addresses two main hurdles in the translation of cell-based drug delivery: scaling the production of engineered T cell ex vivo and generating sufficient biologics in vivo. When programmed to induce IFNß upon engaging the target antigen, the CD4 T cells outperforms CD8 T cells, effectively suppressing cancer cell growth in vitro and in vivo. In summary, this platform enables precise targeting of disease sites with engineered protein-based therapeutics while minimizing healthy tissue exposure. Leveraging CD4 T cells' persistence could enhance disease management by reducing drug administration frequency, addressing critical challenges in cell-based therapy.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Receptores Quiméricos de Antígenos , Linfocitos T CD4-Positivos/inmunología , Animales , Humanos , Receptores Quiméricos de Antígenos/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Sistemas de Liberación de Medicamentos/métodos , Antígenos CD28/inmunología , Antígenos CD28/metabolismo , Línea Celular Tumoral , Ingeniería de Proteínas/métodos
6.
Proc Natl Acad Sci U S A ; 120(2): e2218345120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595680

RESUMEN

CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.


Asunto(s)
Células T de Memoria , Factor 2 Relacionado con NF-E2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Inflamación , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
J Biol Chem ; 300(8): 107583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025451

RESUMEN

Ferroptosis is an iron-dependent cell death mechanism that may be important to prevent tumor formation and useful as a target for new cancer therapies. Transcriptional networks play a crucial role in shaping ferroptosis sensitivity by regulating the expression of transporters, metabolic enzymes, and other proteins. The Cap'n'collar (CNC) protein NFE2 like bZIP transcription factor 2 (NFE2L2, also known as NRF2) is a key regulator of ferroptosis in many cells and contexts. Emerging evidence indicates that the related CNC family members, BTB domain and CNC homolog 1 (BACH1) and NFE2 like bZIP transcription factor 1 (NFE2L1), also have roles in ferroptosis regulation. Here, we comprehensively review the role of CNC transcription factors in governing cellular sensitivity to ferroptosis. We describe how CNC family members regulate ferroptosis sensitivity through modulation of iron, lipid, and redox metabolism. We also use examples of ferroptosis regulation by CNC proteins to illustrate the flexible and highly context-dependent nature of the ferroptosis mechanism in different cells and conditions.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Hierro/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Oxidación-Reducción
8.
Plant J ; 119(3): 1465-1480, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887937

RESUMEN

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Factores de Transcripción , Activación Transcripcional , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Plantas Modificadas Genéticamente , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
9.
EMBO J ; 40(24): e108684, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34726281

RESUMEN

Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Factor de Unión a CCAAT/metabolismo , Mutación , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Fosforilación , Proteolisis , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
J Virol ; 98(6): e0046824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780244

RESUMEN

The antiviral role of the tripartite motif-containing (TRIM) protein family , a member of the E3-ubiquitin ligase family, has recently been actively studied. Hepatitis B virus (HBV) infection is a major contributor to liver diseases; however, the host factors regulated by cytokine-inducible TRIM21 to suppress HBV remain unclear. In this study, we showed the antiviral efficacy of TRIM21 against HBV in hepatoma cell lines, primary human hepatocytes isolated from patient liver tissues, and mouse model. Using TRIM21 knock-out cells, we confirmed that the antiviral effects of interferon-gamma, which suppress HBV replication, are diminished when TRIM21 is deficient. Northern blot analysis confirmed a reduction of HBV RNA levels by TRIM21. Using Luciferase reporter assay, we also discovered that TRIM21 decreases the activity of HBV enhancers, which play a crucial role in covalently closed circular DNA transcription. The participation of the RING domain and PRY-SPRY domain in the anti-HBV effect of TRIM21 was demonstrated through experiments using deletion mutants. We identified a novel interaction between TRIM21 and hepatocyte nuclear factor 4α (HNF4α) through co-immunoprecipitation assay. More specifically, ubiquitination assay revealed that TRIM21 promotes ubiquitin-mediated proteasomal degradation of HNF4α. HNF1α transcription is down-regulated as a result of the degradation of HNF4α, an activator for the HNF1α promoter. Therefore, the reduction of key HBV enhancer activators, HNF4α and HNF1α, by TRIM21 resulted in a decline in HBV transcription, ultimately leading to the inhibition of HBV replication.IMPORTANCEDespite extensive research efforts, a definitive cure for chronic hepatitis B remains elusive, emphasizing the persistent importance of this viral infection as a substantial public health concern. Although the risks associated with hepatitis B virus (HBV) infection are well known, host factors capable of suppressing HBV are largely uncharacterized. This study elucidates that tripartite motif-containing protein 21 (TRIM21) suppresses HBV transcription and consequently inhibits HBV replication by downregulating the hepatocyte nuclear factors, which are host factors associated with the HBV enhancers. Our findings demonstrate a novel anti-HBV mechanism of TRIM21 in interferon-gamma-induced anti-HBV activity. These findings may contribute to new strategies to block HBV.


Asunto(s)
Virus de la Hepatitis B , Factor Nuclear 4 del Hepatocito , Hepatocitos , Interferón gamma , Ribonucleoproteínas , Replicación Viral , Humanos , Virus de la Hepatitis B/fisiología , Animales , Ratones , Interferón gamma/farmacología , Interferón gamma/metabolismo , Hepatocitos/virología , Hepatocitos/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Hepatitis B/virología , Hepatitis B/metabolismo , Células Hep G2 , Línea Celular Tumoral
11.
J Virol ; 98(7): e0045824, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38814067

RESUMEN

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Indolamina-Pirrol 2,3,-Dioxigenasa , FN-kappa B , Transducción de Señal , Triptófano , Replicación Viral , Triptófano/metabolismo , Animales , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , FN-kappa B/metabolismo , Porcinos , Virus de la Fiebre Porcina Clásica/fisiología , Línea Celular , Quinurenina/metabolismo , Peste Porcina Clásica/virología , Peste Porcina Clásica/metabolismo , Autofagia
12.
Plant Physiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028839

RESUMEN

The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of three NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of three NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.

13.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38995239

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor 2 Relacionado con NF-E2 , Fenotipo , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Noqueados , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Angiotensina II/farmacología , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad
14.
Exp Cell Res ; 436(2): 113978, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382805

RESUMEN

Osteosarcoma (OS) is one of the most prevalent primary bone tumors with a high degree of metastasis and poor prognosis. Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and OS cells have been reported to exhibit EMT-like characteristics. Our previous studies have shown that the interaction between tumor necrosis factor superfamily member 11 (TNFRSF11A; also known as RANK) and its ligand TNFSF11 (also known as RANKL) promotes the EMT process in breast cancer cells. However, whether the interaction between RANK and RANKL enhances aggressive behavior by inducing EMT in OS cells has not yet been elucidated. In this study, we showed that the interaction between RANK and RANKL increased the migration, invasion, and metastasis of OS cells by promoting EMT. Importantly, we clarified that the RANK/RANKL axis induces EMT by activating the nuclear factor-kappa B (NF-κB) pathway. Furthermore, the NF-κB inhibitor dimethyl fumarate (DMF) suppressed migration, invasion, and EMT in OS cells. Our results suggest that the RANK/RANKL axis may serve as a potential tumor marker and promising therapeutic target for OS metastasis. Furthermore, DMF may have clinical applications in the treatment of lung metastasis in patients with OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Línea Celular Tumoral , Invasividad Neoplásica , Osteosarcoma/patología , Neoplasias Óseas/patología , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética
15.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663476

RESUMEN

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Movimiento Celular , Proliferación Celular , Factor 2 Relacionado con NF-E2 , Cuassinas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Cuassinas/farmacología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Especies Reactivas de Oxígeno/metabolismo , Progresión de la Enfermedad , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
16.
Cell Mol Life Sci ; 81(1): 106, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418707

RESUMEN

Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T­lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , Linfocitos T , Inmunoterapia , Antígeno CTLA-4
17.
Biochem J ; 481(14): 959-980, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941070

RESUMEN

While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1ß (IL-1ß) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1ß and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1ß- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1ß- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1ß may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.


Asunto(s)
Células Epiteliales , Quinasa I-kappa B , Humanos , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células A549 , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Pulmón/metabolismo , Pulmón/citología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/citología , Regulación de la Expresión Génica/efectos de los fármacos
18.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38227823

RESUMEN

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Asunto(s)
Lesión Pulmonar Aguda , Daño por Reperfusión , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Isquemia , Reperfusión/efectos adversos , Estrés Oxidativo
19.
J Physiol ; 602(15): 3621-3639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980987

RESUMEN

Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.


Asunto(s)
Microbioma Gastrointestinal , Letrozol , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Letrozol/farmacología , Ratas , Microbioma Gastrointestinal/efectos de los fármacos , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Péptidos/farmacología , Resistencia a la Insulina , Proteínas Sanguíneas
20.
J Biol Chem ; 299(1): 102798, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528059

RESUMEN

Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.


Asunto(s)
Citarabina , ADN Glicosilasas , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Apoptosis , Núcleo Celular/metabolismo , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ADN Glicosilasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda