Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(20): 5587-5603.e19, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39293445

RESUMEN

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.


Asunto(s)
Ebolavirus , Tomografía con Microscopio Electrónico , Nucleocápside , Ensamble de Virus , Ebolavirus/ultraestructura , Ebolavirus/química , Ebolavirus/metabolismo , Ebolavirus/fisiología , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Nucleocápside/química , Humanos , Microscopía por Crioelectrón/métodos , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/ultraestructura , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Animales , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/ultraestructura , Modelos Moleculares , Virión/ultraestructura , Virión/metabolismo , Fiebre Hemorrágica Ebola/virología , Chlorocebus aethiops
2.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116470

RESUMEN

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Asunto(s)
Virus de la Parotiditis , Infección Persistente , Humanos , Virus de la Parotiditis/fisiología , Nucleocápside , Fosfoproteínas/metabolismo , Replicación Viral
3.
Cell ; 185(19): 3603-3616.e13, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36084631

RESUMEN

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos/genética , Humanos , Mamíferos , Mutación , Nucleocápside , SARS-CoV-2/genética
4.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32353252

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Sistemas CRISPR-Cas , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , ARN Viral/antagonistas & inhibidores , Células A549 , Profilaxis Antibiótica/métodos , Secuencia de Bases , Betacoronavirus/genética , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Simulación por Computador , Secuencia Conservada , Coronavirus/efectos de los fármacos , Coronavirus/genética , Coronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/tratamiento farmacológico , Proteínas de la Nucleocápside de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
5.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32392465

RESUMEN

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Asunto(s)
Virus Gigantes/genética , Virus Gigantes/metabolismo , Virus Gigantes/fisiología , Cápside/metabolismo , Virus ADN/genética , Genoma Viral/genética , Proteómica/métodos , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Virosis/genética , Virus/genética
6.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474922

RESUMEN

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/fisiología , Ebolavirus/ultraestructura , Nucleocápside/ultraestructura , Nucleoproteínas/ultraestructura , Ensamble de Virus , Modelos Biológicos , Proteínas Mutantes/química , Mutación/genética , Nucleoproteínas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo
7.
Immunity ; 53(4): 864-877.e5, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32791036

RESUMEN

The SARS-CoV-2 pandemic has resulted in millions of infections, yet the role of host immune responses in early COVID-19 pathogenesis remains unclear. By investigating 17 acute and 24 convalescent patients, we found that acute SARS-CoV-2 infection resulted in broad immune cell reduction including T, natural killer, monocyte, and dendritic cells (DCs). DCs were significantly reduced with functional impairment, and ratios of conventional DCs to plasmacytoid DCs were increased among acute severe patients. Besides lymphocytopenia, although neutralizing antibodies were rapidly and abundantly generated in patients, there were delayed receptor binding domain (RBD)- and nucleocapsid protein (NP)-specific T cell responses during the first 3 weeks after symptoms onset. Moreover, acute RBD- and NP-specific T cell responses included relatively more CD4 T cells than CD8 T cells. Our findings provided evidence that impaired DCs, together with timely inverted strong antibody but weak CD8 T cell responses, could contribute to acute COVID-19 pathogenesis and have implications for vaccine development.


Asunto(s)
Betacoronavirus/patogenicidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Células Dendríticas/inmunología , Diabetes Mellitus/inmunología , Hipertensión/inmunología , Neumonía Viral/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , COVID-19 , Convalecencia , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Células Dendríticas/patología , Células Dendríticas/virología , Complicaciones de la Diabetes , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/virología , Progresión de la Enfermedad , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Células Asesinas Naturales/virología , Activación de Linfocitos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Monocitos/virología , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
8.
Immunity ; 53(5): 925-933.e4, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33129373

RESUMEN

We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Inmunidad Humoral , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Arizona/epidemiología , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Prevalencia , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
9.
Mol Cell ; 80(6): 1092-1103.e4, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33248025

RESUMEN

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus/química , Multimerización de Proteína , ARN Viral/química , SARS-CoV-2/química , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Dominios Proteicos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
10.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290746

RESUMEN

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Genoma Viral , Nucleocápside/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Animales , Antivirales/farmacología , COVID-19/genética , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/genética , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Nucleocápside/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , Células Vero , Tratamiento Farmacológico de COVID-19
11.
Trends Biochem Sci ; 48(3): 229-243, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36272892

RESUMEN

Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.


Asunto(s)
Virus ARN , Virus , Condensados Biomoleculares , Fase S , Virus/genética , Virus ARN/genética , ARN
12.
Proc Natl Acad Sci U S A ; 120(46): e2306129120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37939083

RESUMEN

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs). We tested two distinct libraries: a low-diversity library composed of synNC surface mutations (45 variants) and a high-diversity library composed of synNCs displaying miniproteins with binder-like properties (6.2 million variants). While we did not identify any variants from the low-diversity surface library that yielded therapeutically relevant changes in biodistribution, the high-diversity miniprotein display library yielded variants that shifted accumulation toward lungs or muscles in just two rounds of in vivo selection. Our approach should contribute to achieving specific tissue homing patterns and identifying targeting ligands for diseases of interest.


Asunto(s)
Biblioteca de Péptidos , Proteínas , Distribución Tisular , Nucleocápside , Mutación
13.
Proc Natl Acad Sci U S A ; 120(28): e2304087120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399385

RESUMEN

We recently reported that SARS-CoV-2 nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the common cold human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and noninfected cells by binding heparan sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a nonoverlapping set of six cytokines. As with SARS-CoV-2 N, HCoV-OC43 N inhibits CXCL12ß-mediated leukocyte migration in chemotaxis assays, as do all highly pathogenic and common cold HCoV N proteins. Together, our findings indicate that cell surface HCoV N plays important evolutionarily conserved roles in manipulating host innate immunity and as a target for adaptive immunity.


Asunto(s)
Coronavirus Humano OC43 , Inmunidad Innata , Nucleocápside , SARS-CoV-2 , Humanos , Coronavirus Humano OC43/genética , Proteínas de la Membrana , SARS-CoV-2/genética
14.
J Biol Chem ; 300(1): 105536, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092149

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Replicación Viral , Animales , Humanos , Deltacoronavirus , Especificidad del Huésped , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Porcinos , Células HEK293
15.
J Biol Chem ; : 107828, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341499

RESUMEN

The connection between SARS-CoV-2 replication-transcription complexes (RTCs) and nucleocapsid (N) protein is critical for regulating genomic RNA replication and virion packaging over the viral life cycle. However, the mechanism that dynamically regulates genomic RNA packaging and replication remains elusive. Here, we demonstrate that the N-terminal domain (NTD) of SARS-CoV-2 nonstructural protein 3 (Nsp3), a core component of viral RTCs, binds N protein and displaces RNA in a concentration-dependent manner. This interaction disrupts liquid-liquid phase separation of N protein driven by N protein-RNA interactions which is crucial for virion packaging and viral replication. We also report a high-resolution crystal structure of the Nsp3 ubiquitin-like domain 1 (Ubl1) at 1.49 Å, which reveals abundant negative charges on the protein surface. Sequence and structural analyses identify several conserved motifs at the Ubl1-N protein interface and a previously unexplored highly negative groove, providing insights into the molecular mechanism of Ubl1-mediated modulation of N protein-RNA binding. Our findings elucidate the mechanism of dynamic regulation of SARS-CoV-2 genomic RNA replication and packaging over the viral life cycle. Targeting the conserved Ubl1-N protein interaction hotspots also promises to aid in the development of broad-spectrum antivirals against pathogenic coronaviruses.

16.
J Biol Chem ; : 107834, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343000

RESUMEN

The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membraneless compartments through liquid‒liquid phase separation (LLPS), thereby facilitating the congregation of the replication and transcription complex (RTC). Considering the information available regarding the catalytic activities and binding signatures of the N protein‒RNA interaction, this review focuses on the regulatory role of the SARS-CoV‒2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.

17.
EMBO J ; 40(18): e108249, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34296442

RESUMEN

SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin-1ß (IL-1ß) expression, but reduced IL-1ß secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.


Asunto(s)
COVID-19/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nucleocápside/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Caspasa 1/inmunología , Caspasa 1/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células THP-1
18.
J Virol ; : e0098624, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230304

RESUMEN

Nipah virus (NiV) is a highly pathogenic paramyxovirus causing frequently lethal encephalitis in humans. The NiV genome is encapsidated by the nucleocapsid (N) protein. RNA synthesis is mediated by the viral RNA-dependent RNA polymerase (RdRP), consisting of the polymerase (L) protein complexed with the homo-tetrameric phosphoprotein (P). The advance of the polymerase along its template requires iterative dissolution and reformation of transient interactions between P and N protomers in a highly regulated process that remains poorly understood. This study applied functional and biochemical NiV polymerase assays to the problem. We mapped three distinct protein interfaces on the C-terminal P-X domain (P-XD), which form a triangular prism and engage L, the C-terminal N tail, and the globular N core, respectively. Transcomplementation assays using NiV L and N-tail binding-deficient mutants revealed that only one XD of a P tetramer binds to L, whereas three must be available for N-binding for efficient polymerase activity. The dissolution of the N-tail complex with P-XD was coordinated by a transient interaction between N-core and the α-1/2 face of this XD but not unoccupied XDs of the P tetramer, creating a timer for coordinated polymerase advance. IMPORTANCE: Mononegaviruses comprise major human pathogens such as the Ebola virus, rabies virus, respiratory syncytial virus, measles virus, and Nipah virus (NiV). For replication and transcription, their polymerase complexes must negotiate a protein-encapsidated RNA genome, which requires the highly coordinated continuous formation and resolution of protein-protein interfaces as the polymerase advances along the template. The viral P protein assumes a central role in this process, but the molecular mechanism of ensuring polymerase mobility is poorly understood. Studying NiV polymerase complexes, we applied functional and biochemical assays to map three distinct interfaces in the NiV P XD and identified transient interactions between XD and the nucleocapsid core as instrumental in coordinating polymerase advance. These results define a conserved molecular principle regulating paramyxovirus polymerase dynamics and illuminate a promising druggable target for the structure-guided development of broad-spectrum polymerase inhibitors.

19.
J Virol ; 98(8): e0092624, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082816

RESUMEN

The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE: SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.


Asunto(s)
Proteínas de la Nucleocápside , Multimerización de Proteína , Animales , Proteínas de la Nucleocápside/inmunología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/genética , Cristalografía por Rayos X , Porcinos , Epítopos/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Unión Proteica , Anticuerpos Antivirales/inmunología , Humanos , Dominios Proteicos , Modelos Moleculares
20.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38084960

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/metabolismo , Pemetrexed/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda