Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 298(5): 101876, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358513

RESUMEN

Deoxyguanosine kinase (dGK) is reported responsible for the phosphorylation of deoxyadenosine (dA) and deoxyguanosine (dG) in the mitochondrial purine salvage pathway. Antiviral nucleoside analogs known as nucleoside reverse transcriptase inhibitors (NRTIs) must be phosphorylated by host enzymes for the analog to become active. We address the possibility that NRTI purine analogs may be competitive inhibitors of dGK. From a group of such analogs, we demonstrate that entecavir (ETV) competitively inhibited the phosphorylation of dG and dA in rat mitochondria. Mitochondria from the brain, heart, kidney, and liver showed a marked preference for phosphorylation of dG over dA (10-30-fold) and ETV over dA (2.5-4-fold). We found that ETV inhibited the phosphorylation of dG with an IC50 of 15.3 ± 2.2 µM and that ETV and dG were both potent inhibitors of dA phosphorylation with IC50s of 0.034 ± 0.007 and 0.028 ± 0.006 µM, respectively. In addition, the phosphorylation of dG and ETV followed Michaelis-Menten kinetics and each competitively inhibited the phosphorylation of the other. We observed that the kinetics of dA phosphorylation were strikingly different from those of dG phosphorylation, with an exponentially lower affinity for dGK and no effect of dA on dG or ETV phosphorylation. Finally, in an isolated heart perfusion model, we demonstrated that dG, dA, and ETV were phosphorylated and dG phosphorylation was inhibited by ETV. Taken together, these data demonstrate that dGK is inhibited by ETV and that the primary role of dGK is in the phosphorylation of dG rather than dA.


Asunto(s)
Guanina , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacología , Desoxiguanosina , Guanina/análogos & derivados , Mitocondrias/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ratas
2.
J Biol Chem ; 297(2): 101008, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314684

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage.


Asunto(s)
Evolución Molecular , Lactobacillus leichmannii/enzimología , Fosfatos/química , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Lactobacillus leichmannii/química , Fosfatos/metabolismo , Filogenia , Unión Proteica , Especificidad por Sustrato , Thermotoga maritima/química
3.
J Biol Chem ; 296: 100780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34000301

RESUMEN

Macroautophagy (hereafter, autophagy) is a process that directs the degradation of cytoplasmic material in lysosomes. In addition to its homeostatic roles, autophagy undergoes dynamic positive and negative regulation in response to multiple forms of cellular stress, thus enabling the survival of cells. However, the precise mechanisms of autophagy regulation are not fully understood. To identify potential negative regulators of autophagy, we performed a genome-wide CRISPR screen using the quantitative autophagic flux reporter GFP-LC3-RFP. We identified phosphoribosylformylglycinamidine synthase, a component of the de novo purine synthesis pathway, as one such negative regulator of autophagy. Autophagy was activated in cells lacking phosphoribosylformylglycinamidine synthase or phosphoribosyl pyrophosphate amidotransferase, another de novo purine synthesis enzyme, or treated with methotrexate when exogenous levels of purines were insufficient. Purine starvation-induced autophagy activation was concomitant with mammalian target of rapamycin complex 1 (mTORC1) suppression and was profoundly suppressed in cells deficient for tuberous sclerosis complex 2, which negatively regulates mTORC1 through inhibition of Ras homolog enriched in brain, suggesting that purines regulate autophagy through the tuberous sclerosis complex-Ras homolog enriched in brain-mTORC1 signaling axis. Moreover, depletion of the pyrimidine synthesis enzymes carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase and dihydroorotate dehydrogenase activated autophagy as well, although mTORC1 activity was not altered by pyrimidine shortage. These results suggest a different mechanism of autophagy induction between purine and pyrimidine starvation. These findings provide novel insights into the regulation of autophagy by nucleotides and possibly the role of autophagy in nucleotide metabolism, leading to further developing anticancer strategies involving nucleotide synthesis and autophagy.


Asunto(s)
Autofagia , Sistemas CRISPR-Cas , Amidofosforribosiltransferasa/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
4.
J Biol Chem ; 295(52): 17935-17949, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-32900849

RESUMEN

The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.


Asunto(s)
Acetanilidas/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Polifarmacología , Sirtuina 1/antagonistas & inhibidores , Tiourea/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Autofagia , Proliferación Celular , Dihidroorotato Deshidrogenasa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Tiourea/farmacología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
5.
J Biol Chem ; 295(33): 11656-11668, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571877

RESUMEN

The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and l-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs.


Asunto(s)
Péptido Sintasas/química , Péptido Sintasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Péptido Sintasas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Conformación Proteica , Ribonucleósidos/química , Ribonucleósidos/metabolismo , Ribonucleótidos/química , Ribonucleótidos/metabolismo
6.
J Biol Chem ; 294(32): 11980-11991, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31160323

RESUMEN

The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.


Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Adenina/química , Adenina/metabolismo , Adenina Fosforribosiltransferasa/química , Biocatálisis , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Estructura Terciaria de Proteína , Teoría Cuántica , Especificidad por Sustrato
7.
J Biol Chem ; 294(27): 10564-10578, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138644

RESUMEN

Cellular senescence is a mechanism by which cells permanently withdraw from the cell cycle in response to stresses including telomere shortening, DNA damage, or oncogenic signaling. Senescent cells contribute to both age-related degeneration and hyperplastic pathologies, including cancer. In culture, normal human epithelial cells enter senescence after a limited number of cell divisions, known as replicative senescence. Here, to investigate how metabolic pathways regulate replicative senescence, we used LC-MS-based metabolomics to analyze senescent primary human mammary epithelial cells (HMECs). We did not observe significant changes in glucose uptake or lactate secretion in senescent HMECs. However, analysis of intracellular metabolite pool sizes indicated that senescent cells exhibit depletion of metabolites from nucleotide synthesis pathways. Furthermore, stable isotope tracing with 13C-labeled glucose or glutamine revealed a dramatic blockage of flux of these two metabolites into nucleotide synthesis pathways in senescent HMECs. To test whether cellular immortalization would reverse these observations, we expressed telomerase in HMECs. In addition to preventing senescence, telomerase expression maintained metabolic flux from glucose into nucleotide synthesis pathways. Finally, we investigated whether inhibition of nucleotide synthesis in proliferating HMECs is sufficient to induce senescence. In proliferating HMECs, both pharmacological and genetic inhibition of ribonucleotide reductase regulatory subunit M2 (RRM2), a rate-limiting enzyme in dNTP synthesis, induced premature senescence with concomitantly decreased metabolic flux from glucose into nucleotide synthesis. Taken together, our results suggest that nucleotide synthesis inhibition plays a causative role in the establishment of replicative senescence in HMECs.


Asunto(s)
Senescencia Celular , Nucleótidos/metabolismo , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Edición Génica , Glucosa/metabolismo , Humanos , Glándulas Mamarias Humanas/citología , Metabolómica , Nucleótidos/análisis , Ribonucleósido Difosfato Reductasa/deficiencia , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Telomerasa/metabolismo
8.
J Biol Chem ; 294(36): 13464-13477, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337706

RESUMEN

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glicina/biosíntesis , Neoplasias Pulmonares/metabolismo , Nucleótidos de Purina/biosíntesis , Serina/biosíntesis , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/patología , Metabolómica
9.
J Biol Chem ; 294(44): 15889-15897, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300555

RESUMEN

The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in WT postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in WT hearts.


Asunto(s)
Desoxirribonucleótidos/biosíntesis , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Animales , Replicación del ADN , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
10.
J Biol Chem ; 294(27): 10490-10502, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118236

RESUMEN

Human cytosolic serine hydroxymethyltransferase (hcSHMT) is a promising target for anticancer chemotherapy and contains a flexible "flap motif" whose function is yet unknown. Here, using size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and ligand-binding and enzyme-kinetic analyses, we studied the functional roles of the flap motif by comparing WT hcSHMT with a flap-deleted variant (hcSHMT/Δflap). We found that deletion of the flap results in a mixture of apo-dimers and holo-tetramers, whereas the WT was mostly in the tetrameric form. MD simulations indicated that the flap stabilizes structural compactness and thereby enhances oligomerization. The hcSHMT/Δflap variant exhibited different catalytic properties in (6S)-tetrahydrofolate (THF)-dependent reactions compared with the WT but had similar activity in THF-independent aldol cleavage of ß-hydroxyamino acid. hcSHMT/Δflap was less sensitive to THF inhibition than the WT (Ki of 0.65 and 0.27 mm THF at pH 7.5, respectively), and the THF dissociation constant of the WT was also 3-fold lower than that of hcSHMT/Δflap, indicating that the flap is important for THF binding. hcSHMT/Δflap did not display the burst kinetics observed in the WT. These results indicate that, upon removal of the flap, product release is no longer the rate-limiting step, implying that the flap is important for controlling product release. The findings reported here improve our understanding of the functional roles of the flap motif in hcSHMT and provide fundamental insight into how a flexible loop can be involved in controlling the enzymatic reactions of hcSHMT and other enzymes.


Asunto(s)
Glicina Hidroximetiltransferasa/química , Ligandos , Secuencias de Aminoácidos , Sitios de Unión , Estabilidad de Enzimas , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato , Tetrahidrofolatos/química , Tetrahidrofolatos/metabolismo
11.
J Biol Chem ; 293(49): 18903-18913, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30315107

RESUMEN

The dihydroorotase (DHOase) domain of the multifunctional protein carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) catalyzes the third step in the de novo biosynthesis of pyrimidine nucleotides in animals. The crystal structure of the DHOase domain of human CAD (huDHOase) revealed that, despite evolutionary divergence, its active site components are highly conserved with those in bacterial DHOases, encoded as monofunctional enzymes. An important element for catalysis, conserved from Escherichia coli to humans, is a flexible loop that closes as a lid over the active site. Here, we combined mutagenic, structural, biochemical, and molecular dynamics analyses to characterize the function of the flexible loop in the activity of CAD's DHOase domain. A huDHOase chimera bearing the E. coli DHOase flexible loop was inactive, suggesting the presence of distinctive elements in the flexible loop of huDHOase that cannot be replaced by the bacterial sequence. We pinpointed Phe-1563, a residue absolutely conserved at the tip of the flexible loop in CAD's DHOase domain, as a critical element for the conformational equilibrium between the two catalytic states of the protein. Substitutions of Phe-1563 with Ala, Leu, or Thr prevented the closure of the flexible loop and inactivated the protein, whereas substitution with Tyr enhanced the interactions of the loop in the closed position and reduced fluctuations and the reaction rate. Our results confirm the importance of the flexible loop in CAD's DHOase domain and explain the key role of Phe-1563 in configuring the active site and in promoting substrate strain and catalysis.


Asunto(s)
Aspartato Carbamoiltransferasa/química , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/química , Dihidroorotasa/química , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Catálisis , Dominio Catalítico , Dihidroorotasa/genética , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Fenilalanina/química , Conformación Proteica , Dominios Proteicos
12.
J Biol Chem ; 293(26): 10404-10412, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29700111

RESUMEN

Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a ß2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2ß2 state allowing for radical transfer from ß2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4ß4 ring-like state. Here, we investigate whether the α4ß4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-ß interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4ß4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4ß4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-ß interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-ß interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.


Asunto(s)
Sustitución de Aminoácidos , Escherichia coli/enzimología , Multimerización de Proteína/genética , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Nucleótidos de Desoxiadenina/farmacología , Modelos Moleculares , Estructura Cuaternaria de Proteína/genética , Ribonucleótido Reductasas/química
13.
J Biol Chem ; 293(52): 20285-20294, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30385507

RESUMEN

Mitochondrial inner membrane protein MPV17 is a protein of unknown function that is associated with mitochondrial DNA (mtDNA)-depletion syndrome (MDS). MPV17 loss-of-function has been reported to result in tissue-specific nucleotide pool imbalances, which can occur in states of perturbed folate-mediated one-carbon metabolism (FOCM), but MPV17 has not been directly linked to FOCM. FOCM is a metabolic network that provides one-carbon units for the de novo synthesis of purine and thymidylate nucleotides (e.g. dTMP) for both nuclear DNA (nuDNA) and mtDNA replication. In this study, we investigated the impact of reduced MPV17 expression on markers of impaired FOCM in HeLa cells. Depressed MPV17 expression reduced mitochondrial folate levels by 43% and increased uracil levels, a marker of impaired dTMP synthesis, in mtDNA by 3-fold. The capacity of mitochondrial de novo and salvage pathway dTMP biosynthesis was unchanged by the reduced MPV17 expression, but the elevated levels of uracil in mtDNA suggested that other sources of mitochondrial dTMP are compromised in MPV17-deficient cells. These results indicate that MPV17 provides a third dTMP source, potentially by serving as a transporter that transfers dTMP from the cytosol to mitochondria to sustain mtDNA synthesis. We propose that MPV17 loss-of-function and related hepatocerebral MDS are linked to impaired FOCM in mitochondria by providing insufficient access to cytosolic dTMP pools and by severely reducing mitochondrial folate pools.


Asunto(s)
ADN Mitocondrial/biosíntesis , Regulación de la Expresión Génica , Proteínas de la Membrana/biosíntesis , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Uracilo/metabolismo , Transporte Biológico Activo/genética , ADN Mitocondrial/genética , Ácido Fólico/genética , Ácido Fólico/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Timidina Monofosfato/genética , Timidina Monofosfato/metabolismo
14.
J Biol Chem ; 292(7): 3049-3059, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28062578

RESUMEN

Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Factores de Virulencia/metabolismo , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/genética , Criptococosis/enzimología , Cryptococcus neoformans/genética , Inhibidores Enzimáticos/farmacología , Genes Fúngicos
15.
J Biol Chem ; 292(28): 11829-11839, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28559277

RESUMEN

There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.


Asunto(s)
Adenilosuccinato Liasa/antagonistas & inhibidores , Antifúngicos/farmacología , Cryptococcus neoformans/enzimología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Modelos Moleculares , Adenilosuccinato Liasa/química , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Secuencia de Aminoácidos , Animales , Antifúngicos/química , Antifúngicos/uso terapéutico , Sitios de Unión , Criptococosis/tratamiento farmacológico , Criptococosis/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Femenino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Ratones Endogámicos BALB C , Conformación Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Análisis de Supervivencia , Virulencia/efectos de los fármacos
16.
J Biol Chem ; 291(44): 22988-22998, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27613871

RESUMEN

Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.


Asunto(s)
Coenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , GMP-Reductasa/química , Biocatálisis , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Nucleótidos de Guanina/química , Nucleótidos de Guanina/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , NADP/química , NADP/metabolismo , Unión Proteica
17.
Biochem J ; 473(5): 651-60, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26656485

RESUMEN

Leishmania major dihydro-orotate dehydrogenase (DHODHLm) has been considered as a potential therapeutic target against leishmaniasis. DHODHLm, a member of class 1A DHODH, oxidizes dihydro-orotate (DHO) to orotate (ORO) during pyrimidine biosynthesis using fumarate (FUM) as the oxidizing substrate. In the present study, the chemistry of reduction and reoxidation of the flavin mononucleotide (FMN) cofactor in DHODHLm was examined by steady- and pre-steady state kinetics under both aerobic and anaerobic environments. Our results provide for the first time the experimental evidence of co-operative behaviour in class 1A DHODH regulated by DHO binding and reveal that the initial reductive flavin half-reaction follows a mechanism with two steps. The first step is consistent with FMN reduction and shows a hyperbolic dependence on the DHO concentration with a limiting rate (kred) of 110±6 s(-1) and a K(DHO) d of 180±27 µM. Dissociation of the reduced flavin-ORO complex corresponds to the second step, with a limiting rate of 6 s(-1). In the oxidative half-reaction, the oxygen-sensitive reoxidation of the reduced FMN cofactor of DHODHLm by FUM exhibited a hyperbolic saturation profile dependent on FUM concentration allowing estimation of K(FUM) d and the limiting rate (kreox) of 258±53 µM and 35±2 s(-1), respectively. Comparison between steady- and pre-steady-state parameters together with studies of interaction for DHODHLm with both ORO and succinate (SUC), suggests that ORO release is the rate-limiting step in overall catalysis. Our results provide evidence of mechanistic differences between class 1A and class 2 individual half-reactions to be exploited for the development of selective inhibitors.


Asunto(s)
Leishmania major/enzimología , Oxidorreductasas/química , Biocatálisis , Dinitrocresoles/química , Cinética , Ácido Orótico/química , Oxidación-Reducción , Proteínas Recombinantes/química , Ácido Succínico/química
18.
J Biol Chem ; 290(22): 14077-90, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25878246

RESUMEN

Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication. The p53R2 protein is expressed throughout the cell cycle and in quiescent cells where it provides dNTPs for mitochondrial DNA synthesis. Participation of R2 and p53R2 in DNA repair has also been suggested. In this study, we investigated the fate of the RnR subunits during apoptosis. The p53R2 protein was cleaved in a caspase-dependent manner in K-562 cells treated with inhibitors of the Bcr-Abl oncogenic kinase and in HeLa 229 cells incubated with TNF-α and cycloheximide. The cleavage site was mapped between Asp(342) and Asn(343). Caspase attack released a C-terminal p53R2 peptide of nine residues containing the conserved heptapeptide essential for R1 binding. As a consequence, the cleaved p53R2 protein was inactive. In vitro, purified caspase-3 and -8 could release the C-terminal tail of p53R2. Knocking down these caspases, but not caspase-2, -7, and -10, also inhibited p53R2 cleavage in cells committed to die via the extrinsic death receptor pathway. The R2 subunit was subjected to caspase- and proteasome-dependent proteolysis, which was prevented by siRNA targeting caspase-8. Knocking down caspase-3 was ineffective. Protein R1 was not subjected to degradation. Adding deoxyribonucleosides to restore dNTP pools transiently protected cells from apoptosis. These data identify RnR activity as a prosurvival function inactivated by proteolysis during apoptosis.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Desoxirribonucleótidos/química , Ribonucleótido Reductasas/metabolismo , Línea Celular , Proliferación Celular , ADN/química , Replicación del ADN , Humanos , Estructura Terciaria de Proteína , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
19.
J Biol Chem ; 290(11): 6705-13, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25605736

RESUMEN

Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.


Asunto(s)
Metabolómica/métodos , Complejos Multienzimáticos/metabolismo , Nucleótidos de Purina/metabolismo , Purinas/metabolismo , Adenilosuccinato Sintasa/análisis , Adenilosuccinato Sintasa/metabolismo , Bencimidazoles/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/análisis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Células HeLa , Humanos , IMP Deshidrogenasa/análisis , IMP Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Complejos Multienzimáticos/análisis , Nucleótidos de Purina/análisis , Purinas/análisis , Espectrometría de Masa por Ionización de Electrospray
20.
J Biol Chem ; 290(4): 2034-41, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505243

RESUMEN

The primary pathway of TTP synthesis in the heart requires thymidine salvage by mitochondrial thymidine kinase 2 (TK2). However, the compartmentalization of this pathway and the transport of thymidine nucleotides are not well understood. We investigated the metabolism of [(3)H]thymidine or [(3)H]TMP as precursors of [(3)H]TTP in isolated intact or broken mitochondria from the rat heart. The results demonstrated that [(3)H]thymidine was readily metabolized by the mitochondrial salvage enzymes to TTP in intact mitochondria. The equivalent addition of [(3)H]TMP produced far less [(3)H]TTP than the amount observed with [(3)H]thymidine as the precursor. Using zidovudine to inhibit TK2, the synthesis of [(3)H]TTP from [(3)H]TMP was effectively blocked, demonstrating that synthesis of [(3)H]TTP from [(3)H]TMP arose solely from the dephosphorysynthase pathway that includes deoxyuridine triphosphatelation of [(3)H]TMP to [(3)H]thymidine. To determine the role of the membrane in TMP metabolism, mitochondrial membranes were disrupted by freezing and thawing. In broken mitochondria, [(3)H]thymidine was readily converted to [(3)H]TMP, but further phosphorylation was prevented even though the energy charge was well maintained by addition of oligomycin A, phosphocreatine, and creatine phosphokinase. The failure to synthesize TTP in broken mitochondria was not related to a loss of membrane potential or inhibition of the electron transport chain, as confirmed by addition of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone and potassium cyanide, respectively, in intact mitochondria. In summary, these data, taken together, suggest that the thymidine salvage pathway is compartmentalized so that TMP kinase prefers TMP synthesized by TK2 over medium TMP and that this is disrupted in broken mitochondria.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Timidina Quinasa/metabolismo , Timidina Monofosfato/biosíntesis , Nucleótidos de Timina/biosíntesis , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/química , Creatina Quinasa/química , Citosol/metabolismo , Transporte de Electrón , Femenino , Potencial de la Membrana Mitocondrial , Oligomicinas/química , Fosfocreatina/química , Fosforilación , Cianuro de Potasio/química , Ratas , Ratas Sprague-Dawley , Timidina/metabolismo , Zidovudina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda