Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Virol ; 96(17): e0058222, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35976000

RESUMEN

Emerging variants, especially the recent Omicron variant, and gaps in vaccine coverage threaten mRNA vaccine mediated protection against SARS-CoV-2. While children have been relatively spared by the ongoing pandemic, increasing case numbers and hospitalizations are now evident among children. Thus, it is essential to better understand the magnitude and breadth of vaccine-induced immunity in children against circulating viral variant of concerns (VOCs). Here, we compared the magnitude and breadth of humoral immune responses in adolescents and adults 1 month after the two-dose Pfizer (BNT162b2) vaccination. We found that adolescents (aged 11 to 16) demonstrated more robust binding antibody and neutralization responses against the wild-type SARS-CoV-2 virus spike protein contained in the vaccine compared to adults (aged 27 to 55). The quality of the antibody responses against VOCs in adolescents were very similar to adults, with modest changes in binding and neutralization of Beta, Gamma, and Delta variants. In comparison, a significant reduction of binding titers and a striking lack of neutralization was observed against the newly emerging Omicron variant for both adolescents and adults. Overall, our data show that a two-dose BNT162b2 vaccine series may be insufficient to protect against the Omicron variant. IMPORTANCE While plasma binding and neutralizing antibody responses have been reported for cohorts of infected and vaccinated adults, much less is known about the vaccine-induced antibody responses to variants including Omicron in children. This illustrates the need to characterize vaccine efficacy in key vulnerable populations. A third (booster) dose of BNTb162b was approved for children 12 to 15 years of age by the Food and Drug Administration (FDA) on January 1, 2022, and pediatric clinical trials are under way to evaluate the safety, immunogenicity, and effectiveness of a third dose in younger children. Similarly, variant-specific booster doses and pan-coronavirus vaccines are areas of active research. Our data show adolescents mounted stronger humoral immune responses after vaccination than adults. It also highlights the need for future studies of antibody durability in adolescents and children as well as the need for future studies of booster vaccination and their efficacy against the Omicron variant.


Asunto(s)
Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Niño , Humanos , Inmunización Secundaria , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología
2.
J Med Virol ; 95(6): e28846, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282766

RESUMEN

Since the first SARS-CoV-2 outbreak in late 2019, the SARS-CoV-2 genome has harbored multiple mutations, especially spike protein mutations. The currently fast-spreading Omicron variant that manifests without symptoms or with upper respiratory diseases has been recognized as a serious global public health problem. However, its pathological mechanism is largely unknown. In this work, rhesus macaques, hamsters, and BALB/C mice were employed as animal models to explore the pathogenesis of Omicron (B.1.1.529). Notably, Omicron (B.1.1.529) infected the nasal turbinates, tracheae, bronchi, and lungs of hamsters and BALB/C mice with higher viral loads than in those of rhesus macaques. Severe histopathological damage and inflammatory responses were observed in the lungs of Omicron (B.1.1.529)-infected animals. In addition, viral replication was found in multiple extrapulmonary organs. Results indicated that hamsters and BALB/c mice are potential animal models for studies on the development of drugs/vaccines and therapies for Omicron (B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Cricetinae , Macaca mulatta , Ratones Endogámicos BALB C , Bronquios
3.
Infection ; 51(2): 323-330, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35696057

RESUMEN

OBJECTIVES: To assess the severity of symptoms, duration of infection and viral loads of health-care workers (HCWs) who tested positive for Coronavirus disease 2019 (COVID-19) during Omicron's prevalence, in regard to vaccination and previous infection. METHODS: During 2 weeks of highest rate of COVID-19 cases in Bosnia and Herzegovina, the positive nasopharyngeal swabs were analysed in 141 HCWs by reverse transcription quantitative PCR, targeting four different genes: RdRp, E, N and nsp14. Uniformed questionnaire was used to collect relevant sociodemographic and epidemiological data from HCWs divided into four groups: unvaccinated/not previously infected (group 1); unvaccinated/previously infected (group 2); vaccinated/not previously infected (group 3); and vaccinated/previously infected (group 4). RESULTS: We observed that occurrence of fever and smell or taste loss were more frequent in group 1 (86.4% and 25%) and group 3 (76.9% and 19.2%), in comparison to group 2 (64.4% and 6.7%) and group 4 (69.2% and 3.8%), (p = 0.023 and p = 0.003). Although statistically not significant, group 2 (61.9%), group 3 (65.4%), and group 4 (70.8%) experienced negativization within 7 days of positive RT-qPCR test, whereas 51.2% of HCWs from group 1 tested negative later on. There is no significant difference between all four groups regarding Ct values of analysed genes. CONCLUSION: During Omicron's prevalence, the vaccination had less substantial effect on symptomatic disease among HCWs, while fever and loss of smell or taste were considerably less likely to occur upon reinfection. Since viral loads and negativization periods do not seem to significantly vary, irrespective of pre-existing immunity, systemic vaccination and mask-wearing should still be considered among HCWs.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa , Fiebre , Personal de Salud
4.
Infection ; 51(1): 239-245, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35596057

RESUMEN

PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Técnicas de Cultivo de Célula , ARN
5.
Environ Res ; 225: 115612, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871942

RESUMEN

The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.


Asunto(s)
Contaminación del Aire , COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , China
6.
Virulence ; 15(1): 2339703, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38576396

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 µM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Daptomicina , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Daptomicina/farmacología , Daptomicina/uso terapéutico , COVID-19/virología , Antibacterianos/farmacología , Unión Proteica , Internalización del Virus/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Células HEK293 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química
7.
Emerg Microbes Infect ; 12(1): e2156814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36510837

RESUMEN

By December 2021, administration of the third dose of COVID-19 vaccinations coincided with the spread of the Omicron variant in Europe. Questions had been raised on protection against infection conferred by previous vaccination and/or infection. Our study population included 252,433 participants from the COVID-19 vaccination registry in Malta. Data were then matched with the national testing database. We collected vaccination status, vaccine brand, vaccination date, infection history, and age. Using logistic regression, we examined different combinations of vaccine dose, prior infection status and time, and the odds of infection during the period when the Omicron variant was the dominant variant in Malta. Participants infected with Sars-Cov-2 prior to the Omicron wave had a significantly lower odds of being infected with the Omicron variant. Additionally, the more recent the infection and the more recent the vaccination, the lower the odds of infection. Receiving a third dose within 20 weeks of the start of the Omicron wave in Malta offered similar odds of infection as receiving a second dose within the same period. Time since vaccination was a strong determinant against infection, as was previous infection status and the number of doses taken. This finding reinforces the importance of future booster dose provision especially to vulnerable populations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Malta/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Inmunidad Adaptativa
8.
Cell Signal ; 109: 110798, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423342

RESUMEN

This study investigated the efficacy of existing vaccines against hospitalization and infection due to the Omicron variant of COVID-19, particularly for those who received two doses of Moderna or Pfizer vaccines and one dose of Johnson & Johnson vaccine or who were vaccinated more than five months before. A total of 36 variants in Omicron's spike protein, targeted by all three vaccinations, have made antibodies less effective at neutralizing the virus. The genotyping of the SARS-CoV-2 viral sequence revealed clinically significant variants such as E484K in three genetic mutations (T95I, D614G, and del142-144). A woman showed two of these mutations, indicating a potential risk of infection after successful immunization, as recently reported by Hacisuleyman (2021). We examine the effects of mutations on domains (NID, RBM, and SD2) found at the interfaces of the spike domains Omicron B.1.1529, Delta/B.1.1529, Alpha/B.1.1.7, VUM B.1.526, B.1.575.2, and B.1.1214 (formerly VOI Iota). We tested the affinity of Omicron for ACE2 and found that the wild- and mutant-spike proteins were using atomistic molecular dynamics simulations. According to the binding free energies calculated during mutagenesis, the ACE2 bound Omicron spikes more strongly than the wild strain SARS-CoV-2. T95I, D614G, and E484K are three substitutions that significantly contribute to RBD, corresponding to ACE2 binding energies and a doubling of the electrostatic potential of Omicron spike proteins. The Omicron appears to bind to ACE2 with greater affinity, increasing its infectivity and transmissibility. The spike virus was designed to strengthen antibody immune evasion through binding while boosting receptor binding by enhancing IgG and IgM antibodies that stimulate human ß-cell, as opposed to the wild strain, which has more vital stimulation of both antibodies.


Asunto(s)
COVID-19 , Vacunas , Femenino , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Infección Irruptiva , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoglobulina M
9.
Front Immunol ; 14: 1113175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063859

RESUMEN

Since the emergence of SARS-CoV-2, dozens of variants of interest and half a dozen variants of concern (VOCs) have been documented by the World Health Organization. The emergence of these VOCs due to the continuous evolution of the virus is a major concern for COVID-19 therapeutic antibodies and vaccines because they are designed to target prototype/previous strains and lose effectiveness against new VOCs. Therefore, there is a need for time- and cost-effective strategies to estimate the immune escape and redirect therapeutic antibodies against newly emerging variants. Here, we computationally predicted the neutralization escape of the SARS-CoV-2 Delta and Omicron variants against the mutational space of RBD-mAbs interfaces. Leveraging knowledge of the existing RBD-mAb interfaces and mutational space, we fine-tuned and redirected CT-p59 (Regdanvimab) and Etesevimab against the escaped variants through complementarity-determining regions (CDRs) diversification. We identified antibodies against the Omicron lineage BA.1 and BA.2 and Delta variants with comparable or better binding affinities to that of prototype Spike. This suggests that CDRs diversification by hotspot grafting, given an existing insight into the Ag-Abs interface, is an exquisite strategy to redirect antibodies against preselected epitopes and combat the neutralization escape of emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales/uso terapéutico , Regiones Determinantes de Complementariedad/genética
10.
Front Immunol ; 14: 1290279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259438

RESUMEN

We conducted a retrospective cohort study to evaluate the transmission risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 variant and the effectiveness of inactivated COVID-19 vaccine boosters in Shenzhen during a BA.2 outbreak period from 1 February to 21 April 2022. A total of 1,248 individuals were infected with the BA.2 variant, and 7,855 close contacts were carefully investigated. The risk factors for the high secondary attack rate of SARS-CoV-2 infection were household contacts [adjusted odds ratio (aOR): 1.748; 95% confidence interval (CI): 1.448, 2.110], younger individuals aged 0-17 years (aOR: 2.730; 95% CI: 2.118, 3.518), older persons aged ≥60 years (aOR: 1.342; 95% CI: 1.135, 1.588), women (aOR: 1.442; 95% CI: 1.210, 1.718), and the subjects exposed to the post-onset index cases (aOR: 8.546; 95% CI: 6.610, 11.050), respectively. Compared with the unvaccinated and partially vaccinated individuals, a relatively low risk of secondary attack was found for the individuals who received booster vaccination (aOR: 0.871; 95% CI: 0.761, 0.997). Moreover, a high transmission risk was found for the index cases aged ≥60 years (aOR: 1.359; 95% CI: 1.132, 1.632), whereas a relatively low transmission risk was observed for the index cases who received full vaccination (aOR: 0.642; 95% CI: 0.490, 0.841) and booster vaccination (aOR: 0.676; 95% CI: 0.594, 0.770). Compared with full vaccination, booster vaccination of inactivated COVID-19 vaccine showed an effectiveness of 24.0% (95% CI: 7.0%, 37.9%) against BA.2 transmission for the adults ≥18 years and 93.7% (95% CI: 72.4%, 98.6%) for the adults ≥60 years, whereas the effectiveness was 51.0% (95% CI: 21.9%, 69.3%) for the individuals of 14 days to 179 days after booster vaccination and 51.2% (95% CI: 37.5%, 61.9%) for the non-household contacts. The estimated mean values of the generation interval, serial interval, incubation period, latent period, and viral shedding period were 2.7 days, 3.2 days, 2.4 days, 2.1 days, and 17.9 days, respectively. In summary, our results confirmed that the main transmission route of Omicron BA.2 subvariant was household contact, and booster vaccination of the inactivated vaccines was relatively effective against BA.2 subvariant transmission in older people.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Vacunas contra la COVID-19 , Estudios Retrospectivos , Eficacia de las Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , China/epidemiología
11.
Front Immunol ; 14: 1296148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259440

RESUMEN

Background: Patients with autoimmune/inflammatory conditions on anti-CD20 therapies, such as rituximab, have suboptimal humoral responses to vaccination and are vulnerable to poorer clinical outcomes following SARS-CoV-2 infection. We aimed to examine how the fundamental parameters of antibody responses, namely, affinity and concentration, shape the quality of humoral immunity after vaccination in these patients. Methods: We performed in-depth antibody characterisation in sera collected 4 to 6 weeks after each of three vaccine doses to wild-type (WT) SARS-CoV-2 in rituximab-treated primary vasculitis patients (n = 14) using Luminex and pseudovirus neutralisation assays, whereas we used a novel microfluidic-based immunoassay to quantify polyclonal antibody affinity and concentration against both WT and Omicron (B.1.1.529) variants. We performed comparative antibody profiling at equivalent timepoints in healthy individuals after three antigenic exposures to WT SARS-CoV-2 (one infection and two vaccinations; n = 15) and in convalescent patients after WT SARS-CoV-2 infection (n = 30). Results: Rituximab-treated patients had lower antibody levels and neutralisation titres against both WT and Omicron SARS-CoV-2 variants compared to healthy individuals. Neutralisation capacity was weaker against Omicron versus WT both in rituximab-treated patients and in healthy individuals. In the rituximab cohort, this was driven by lower antibody affinity against Omicron versus WT [median (range) KD: 21.6 (9.7-38.8) nM vs. 4.6 (2.3-44.8) nM, p = 0.0004]. By contrast, healthy individuals with hybrid immunity produced a broader antibody response, a subset of which recognised Omicron with higher affinity than antibodies in rituximab-treated patients [median (range) KD: 1.05 (0.45-1.84) nM vs. 20.25 (13.2-38.8) nM, p = 0.0002], underpinning the stronger serum neutralisation capacity against Omicron in the former group. Rituximab-treated patients had similar anti-WT antibody levels and neutralisation titres to unvaccinated convalescent individuals, despite two more exposures to SARS-CoV-2 antigen. Temporal profiling of the antibody response showed evidence of affinity maturation in healthy convalescent patients after a single SARS-CoV-2 infection, which was not observed in rituximab-treated patients, despite repeated vaccination. Discussion: Our results enrich previous observations of impaired humoral immune responses to SARS-CoV-2 in rituximab-treated patients and highlight the significance of quantitative assessment of serum antibody affinity and concentration in monitoring anti-viral immunity, viral escape, and the evolution of the humoral response.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Humanos , Vacunas contra la COVID-19 , Afinidad de Anticuerpos , Microfluídica , Rituximab/uso terapéutico , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos
12.
Adv Redox Res ; : 100064, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36776420

RESUMEN

Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 µM for ChloViD2022, 0.22 and 0.72 µM for CoViTris2022, and 0.25 and 0.78 µM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.

13.
Front Med (Lausanne) ; 9: 1023507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438045

RESUMEN

The addictive protection against SARS-CoV-2 reinfection conferred by vaccination, as compared to natural immunity alone, remains to be quantified. We thus carried out a meta-analysis to summarize the existing evidence on the association between SARS-CoV-2 vaccination and the risk of reinfection and disease. We searched MedLine, Scopus and preprint repositories up to July 31, 2022, to retrieve cohort or case-control studies comparing the risk of SARS-CoV-2 reinfection or severe/critical COVID-19 among vaccinated vs. unvaccinated subjects, recovered from a primary episode. Data were combined using a generic inverse-variance approach. Eighteen studies, enrolling 18,132,192 individuals, were included. As compared to the unvaccinated, vaccinated subjects showed a significantly lower likelihood of reinfection (summary Odds Ratio-OR: 0.47; 95% CI: 0.42-0.54). Notably, the results did not change up to 12 months of follow-up, by number of vaccine doses, in studies that adjusted for potential confounders, adopting different reinfection definitions, and with different predominant strains. Once reinfected, vaccinated subjects were also significantly less likely to develop a severe disease (OR: 0.45; 95% CI: 0.38-0.54). Although further studies on the long-term persistence of protection, under the challenge of the new circulating variants, are clearly needed, the present meta-analysis provides solid evidence of a stronger protection of hybrid vs. natural immunity, which may persist during Omicron waves and up to 12 months.

14.
Inform Med Unlocked ; 33: 101074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092780

RESUMEN

Several more infectious SARS-CoV-2 variants have emerged globally since SARS-CoV-2 pandemic and the discovery of the first D614G variant of SARS-CoV-2 spike proteins in 2020. Delta (B.1.617.2) and Omicron (B.1.1.529) variants have proven to be of major concern out of all the reported variants, considering their influence on the virus' transmissibility and severity. This study aimed at evaluating the impact of mutations on these two variants on stability and molecular interactions between the viral Spike protein and human angiotensin converting enzyme-2 (hACE-2). The spike proteins receptor binding domain (RBD) was docked with the hACE-2 using HADDOCK servers. To understand and establish the effects of the mutations on the structural stability and flexibility of the RBD-hACE-2 complex, molecular dynamic (MD) simulation of the docked complex was performed and evaluated. The findings from both molecular docking analysis and binding free energy showed that the Omicron (OM) variant has high receptiveness towards hACE-2 versus Delta variant (DT), thereby, responsible for its increase in transmission. The structural stability and flexibility evaluation of variants' systems showed that mutations on DT and OM variants disturbed the stability of either the spike protein or the RBD-hACE-2 complex, with DT variant having greater instability impact. This study, therefore, assumed this obvious instability observed in DT variant might be associated or responsible for the reported severity in DT variant disease over the OM variant disease. This study provides molecular insight into the effects of OM and DT variants on stability and interactions between SARS-CoV-2 protein and hACE-2.

15.
Comput Biol Med ; 146: 105502, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605482

RESUMEN

The fundamental role of microRNAs (miRNAs) has long been associated with regulation of gene expression during transcription and post transcription of mRNA's 3'UTR by the RNA interference mechanism. Also, the process of how miRNAs tend to induce mRNA degradation has been predominantly studied in many infectious diseases. In this article, we would like to discuss the interaction of dietary plant miRNAs derived from fresh fruits against the viral genome of the causative agent of COVID-19, specifically targeting the 3'UTR of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) genome. Expanding the analysis, we have also identified plant miRNAs that interact against the Omicron (B.1.1.529) variant of SARS-CoV-2 across 37 countries/territories throughout the world. This cross-species virus-plant interaction led us to identify the alignment of dietary plant miRNAs found in fruits like Citrus sinensis (Orange), Prunus persica (Peaches), Vitis vinifera (Grapes) and Malus domestica (Apple) onto the viral genomes. In particular, the interaction of C. sinensis miRNA - csi-miR169-3p and SARS-CoV-2 is noteworthy, as the targeted 3'UTR region "CTGCCT" is found conserved amongst all curated 772 Omicron variants across the globe. Hence this site "CTGCCT" and miRNA csi-miR169-3p may become promising therapeutic candidates to induce viral genome silencing. Thereby, this study reveals the mechanistic way of how fruits tend to enact a fight against viruses like SARS-CoV-2 and aid in maintaining a strong immune system of an individual.


Asunto(s)
COVID-19 , Citrus sinensis , Malus , MicroARNs , Regiones no Traducidas 3' , COVID-19/genética , Citrus sinensis/genética , Citrus sinensis/metabolismo , Frutas/genética , MicroARNs/metabolismo , SARS-CoV-2/genética
16.
J Infect Public Health ; 15(7): 726-733, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35687982

RESUMEN

OBJECTIVES: We provided COVID-19 outbreak trends in South Africa during the Omicron (B.1.1.529), Delta (B.1.617.2), and Beta (B.1.351) variants outbreak periods from November 2020 to March 2022. METHODS: We used the time series summary data of the COVID-19 outbreak for South Africa available in the COVID-19 data repository created by the Center for System and Science and Engineering at Johns Hopkins University and the Our World in Data database by the University of Oxford from January 2020 to March 2022. We used the joinpoint regression model with a data-driven Bayesian information criterion method for analyzing the outbreak trends. In addition, we used density ellipses and partition modeling on the outbreak data. RESULTS: During the Omicron outbreak period, COVID-19 cases in South Africa significantly jumped by 4.7 times from December 01 to December 08, 2021. The average daily growth rate of incidence peaked at 23,000 cases/day until December 16, 2021, which was 18.6 % higher than the peak growth during the Delta outbreak period. South Africa experienced peak growth in COVID-19 cases with 18,611 cases/day (January 04 to January 14, 2021) during the Beta outbreak period and with 19,395 cases/day (July 01 to July 11, 2021) during the Delta outbreak period. Density ellipsoid showed a significant correlation between daily cases and daily death count during the Beta and Delta outbreak period which was not prominent in the Omicron outbreak period. Comparatively higher daily death tolls were reported in days with a recovery rate of less than 89.1 % and 91.9 % in the Beta and Delta outbreak period respectively. The backlog counts may be one of the reasons for the significant increase in daily death tolls during the Omicron period. CONCLUSIONS: During the Omicron period, COVID-19 cases peaked growth was 18.6 % higher than the peak growth during the Delta outbreak period. Despite that fact, growth in death trends in the Omicron outbreak period was found low which might be due to the low mortality rate and case fatality proportion. The emergence of the Omicron variant once again reminds us that- "no one is safe until everyone is safe".


Asunto(s)
COVID-19 , SARS-CoV-2 , Teorema de Bayes , COVID-19/epidemiología , Brotes de Enfermedades , Humanos , Sudáfrica/epidemiología
17.
Saudi J Biol Sci ; 29(9): 103372, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35855306

RESUMEN

The world has been combating different variants of SARS-COV-19 since its first outbreak in Wuhan city. SARS-COV-19 is caused by the coronavirus. The corona virus mutates and becomes more transmissible than earlier variants as the day passes. Till 24 November 2021, SARS-COV-19 has four variants Alpha, Beta, Gamma, and Delta, respectively. Among them, the delta variant caused severe havoc across the world. South Africa registered a new variant with the World Health Organization (WHO) on 24 November 2021, which is much more transmissible than previous variants. The WHO classified it as a variant of concern (VOC) on 26 November 2021 and called it the Greek letter Omicron (B.1.1.529), the fifteenth letter in the alphabet. Here a serious attempt was made to comprehend the omicron variant's origin, nomenclature, characteristics, mutations, the difference between delta and omicron variant, epidemiology, transmission, clinical features, impact on immunity, immune evasion, vaccines efficacy, etc.

18.
Sci Total Environ ; 846: 157375, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850355

RESUMEN

Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , ARN Viral , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales
19.
Comput Biol Med ; 147: 105735, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35767919

RESUMEN

Since the new variant of SARS-CoV-2, Omicron (BA.1) has raised serious concerns, it is important to investigate the effects of mutations in the NTD and RBD domains of the spike protein for the development of COVID-19 vaccines. In this study, computational analysis of the Wuhan and Omicron NTDs and RBDs in their unbound and bound states to mAb 4A8 and ACE2 were performed. In addition, the interaction of NTD with antibody and RBD with ACE2 were evaluated in the presence of long glycans. The results show that long glycans at the surface of NTDs can reduce the accessibility of protein epitopes, thereby reducing binding efficiency and neutralizing potency of specific antibodies. Also, our findings indicate that the existence of the long glycans result in increased stability and enhanced affinity of the RBD to ACE2 in the Wuhan and Omicron variant. Key residues that play an important role in increasing the structural stability of the protein were identified using RIN analysis and in the state of interaction with mAb 4A8 and ACE2 through per-residue decomposition analysis. Further, the results of the free energy binding calculation using MM/GBSA method show that the Omicron variant has a higher infectivity than the Wuhan. This study provides a better understanding of the structural changes in the spike protein and can be useful for the development of novel therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Vacunas contra la COVID-19 , Humanos , Mutación , Peptidil-Dipeptidasa A/química , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
20.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36145305

RESUMEN

Therapeutically useful small-molecule inhibitors (SMIs) of protein−protein interactions (PPIs) initiating the cell attachment and entry of viruses could provide novel alternative antivirals that act via mechanisms similar to that of neutralizing antibodies but retain the advantages of small-molecule drugs such as oral bioavailability and low likelihood of immunogenicity. From screening our library, which is focused around the chemical space of organic dyes to provide good protein binders, we have identified several promising SMIs of the SARS-CoV-2 spike­ACE2 interaction, which is needed for the attachment and cell entry of this coronavirus behind the COVID-19 pandemic. They included organic dyes, such as Congo red, direct violet 1, and Evans blue, which seem to be promiscuous PPI inhibitors, as well as novel drug-like compounds (e.g., DRI-C23041). Here, we show that in addition to the original SARS-CoV-2 strain, these SMIs also inhibit this PPI for variants of concern including delta (B.1.617.2) and omicron (B.1.1.529) as well as HCoV-NL63 with low- or even sub-micromolar activity. They also concentration-dependently inhibited SARS-CoV-2-S expressing pseudovirus entry into hACE2-expressing cells with low micromolar activity (IC50 < 10 µM) both for the original strain and the delta variant. DRI-C23041 showed good therapeutic (selectivity) index, i.e., separation between activity and cytotoxicity (TI > 100). Specificities and activities require further optimization; nevertheless, these results provide a promising starting point toward novel broad-spectrum small-molecule antivirals that act via blocking the interaction between the spike proteins of coronaviruses and their ACE2 receptor initiating cellular entry.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda