Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(33): e2400313, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552249

RESUMEN

Multicolor luminescence of organic fluorescent materials is an essential part of lighting and optical communication. However, the conventional construction of a multicolor luminescence system based on integrating multiple organic fluorescent materials of a single emission band remains complicated and to be improved. Herein, organic alloys (OAs) capable of full-color emission are synthesized based on charge transfer (CT) cocrystals. By adjusting the molar ratio of electron donors, the emission color of the OAs can be conveniently and continuously regulated in a wide visible range from blue (CIE: 0.187, 0.277), to green (CIE: 0.301, 0.550), and to red (CIE: 0.561, 0.435). The OAs show analogous 1D morphology with smooth surface, allowing for full-color waveguides with low optical-loss coefficient. Impressively, full-color optical displays are easily achieved through the OAs system with continuous emission, which shows promising applications in the field of optical display and promotes the development of organic photonics.

2.
Angew Chem Int Ed Engl ; 60(6): 3037-3046, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33073481

RESUMEN

An electron donor/acceptor pair comprising perylene (Pe) and 9,10-dicyanoanthracene (DCA) was specifically designed to construct organic charge-transfer (CT) alloys via weak CT interaction through a solution co-assembly route. By adjusting the molar ratio between Pe and DCA, we achieve color- and dimension-tunable CT alloy assemblies involving one-dimensional (1D) (DCA)1-x (Pe)x (0 ≤ x ≤10 %) microribbons and two-dimensional (2D) (Pe)1-y (DCA)y (0 ≤ y ≤5 %) nanosheets as a consequence of energy transfer from DCA or α-Pe to Pe-DCA CT complex. Importantly, dimension-related optical waveguiding performances are also revealed: continuously adjustable optical loss in 1D (DCA)1-x (Pe)x microribbons and successive conversion from isotropic waveguide to anisotropic waveguide in 2D (Pe)1-y (DCA)y nanosheets. The present work provides a desired platform for in-depth investigation of light-harvesting organic CT alloy assemblies, which show promising applications in miniaturized optoelectronic devices.

3.
Chempluschem ; 89(6): e202300761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38259048

RESUMEN

We showcase herein organic crystalline solid solutions (CSSs) based on the simplest polycyclic aromatic hydrocarbon (PAH) scaffold, naphthalene, stabilized by dispersion forces induced by adamantane substitution. High thermal stability of the host and guest molecules synthesized by cross-coupling of dibromonaphthalene derivatives and 4-(1-adamantyl)phenyl boronic ester enabled formation of crystals by sublimation. We could generate binary monocrystalline solid solution systems proven by X-ray crystallography, the first system of designed CSSs stabilized exclusively via dispersion forces with structural evidence. These observations are additionally supported by lattice energy calculations and spectroscopic examinations. For the generation of CSSs, it is of utmost importance that the host and guest molecules have similar lattice energies and spatial compatibility. We anticipate that the thermostable organic CSS design demonstrated herein would be beneficial for functional materials and further investigation towards materials with unique properties.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda