Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Small ; 20(7): e2306457, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803917

RESUMEN

As a main cause of serious cardiovascular diseases, atherosclerosis is characterized by deposited lipid and cholesterol crystals (CCs), which is considered as a great challenge to the current treatments. In this study, a dual-track reverse cholesterol transport strategy is used to overcome the cumulative CCs in the atherosclerotic lesions via a targeting nanoplatform named as LPLCH. Endowed with the active targeting ability to the plaques, the nanoparticles can be efficiently internalized and achieve a pH-triggered charge conversion for the escape from lysosomes. During this procedure, the liver X receptor (LXR) agonists loaded in nanoparticles are replaced by the deposited lysosomal CCs, leading to a LXR mediated up-regulation of ATP-binding cassette transporte ABCA1/G1 with the local CCs carrying at the same time. Thus, the cumulative CCs are removed in a dual-track way of ABCA1/G1 mediated efflux and nanoparticle-based carrying. The in vivo investigations indicate that LPLCH exhibits a favorable inhibition on the plaque progression and a further reversal of formed lesions when under a healthy diet. And the RNA-sequencing suggests that the cholesterol transport also synergistically activates the anti-inflammation effect. The dual-track reverse cholesterol transport strategy performed by LPLCH delivers an exciting candidate for the effective inhibition and degradation of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Colesterol/metabolismo , Transporte Biológico
2.
Biopolymers ; 115(5): e23609, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38899576

RESUMEN

Polysaccharide-protein multilayers (PPMLs) consisting of bovine serum albumin (BSA) and chondroitin sulfate (CS) are assembled in acidic solution (pH 4.2) via layer-by-layer deposition method. The formation of PPMLs on gold surface and their responsiveness to pH change from 4.2 to 7 is investigated by Surface Plasmon Resonance Spectroscopy. The buildup of the multilayer at pH 4.2 exhibits non-linear growth while the formation of the first layers is strongly affected by the physicochemical properties of the gold surface. Neutral solution (pH 7) affects the interactions between the biopolymers and results in a partially disassemble (disintegration) of the multilayer film. On one hand, the single pair of layers, BSA-CS and the double pair of layers, (BSA-CS)2, assemblies are stable in neutral pH, a result that will be of interest for biomedical applications. On the other hand, multilayer films consisting of more than four layers that is (BSA-CS)2

Asunto(s)
Sulfatos de Condroitina , Oro , Albúmina Sérica Bovina , Resonancia por Plasmón de Superficie , Oro/química , Resonancia por Plasmón de Superficie/métodos , Concentración de Iones de Hidrógeno , Albúmina Sérica Bovina/química , Adsorción , Sulfatos de Condroitina/química , Propiedades de Superficie , Bovinos , Animales , Polisacáridos/química
3.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631610

RESUMEN

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Asunto(s)
Grafito , Nanoestructuras , Óxido Nítrico , Grafito/química , Concentración de Iones de Hidrógeno , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestructuras/química , Humanos , Dipéptidos/química , Fenilalanina/química , Fenilalanina/análogos & derivados
4.
Langmuir ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018029

RESUMEN

Nanofilms fabricated by layer-by-layer (LbL) assembly from polyelectrolytes (PEs) are important materials for various applications. However, PE films cannot retain the charges along the polymer chains during fabrication, resulting in a low charge density. In this study, the preparation of LbL nanofilms with preserved positive charges via a controllable and efficient approach was achieved. To fabricate fully positively charged (FPC) LbL nanofilms, a polycation, poly-l-lysine, was partially grafted with azide and alkyne groups. Through copper-catalyzed azide-alkyne cycloaddition and the LbL procedure, nanofilms were fabricated with all of the individual layers covalently bonded, improving the pH stability of the nanofilms. Because the resulting nanofilms had a high charge density with positive charges both inside and on the surface, they showed unique pH-dependent swelling properties and adsorption of negatively charged molecules compared with those of traditional polyelectrolyte LbL nanofilms. This kind of FPC nanofilm has great potential for use in sensors, diagnostics, and filter nanomaterials in the biomedical and environmental fields.

5.
Macromol Rapid Commun ; : e2400439, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037337

RESUMEN

This work presents a versatile strategy for the synthesis of dual stimuli-responsive amphiphilic glycomacromolecules with tailored release properties. Amphiphilic precision glycomacromolecules (APGs) derived from tailor-made building blocks using solid phase polymer synthesis form glycofunctionalized micelles, a versatile class of materials with applications in drug delivery, as antiinfection agents as well as simple cell mimetics. In this work, this concept is extended by integrating cleavable building blocks into APGs now allowing stimuli-responsive release of glycan ligands or destruction of the micelles. This study incorporates a newly designed acid-labile building block, 4-(4-(((((9H-fluoren-9-yl)methoxy)carbonyl)amino)methyl)-1,3-dioxolan-2-yl)benzoic acid (DBA), suitable also for other types of solid phase or amide chemistry, and an established UV-cleavable 2-nitrobenzyl linker (PL). The results demonstrate that both linkers can be cleaved independently and thus allow dual stimuli-responsive release from the APG micelles. By choosing the APG design e.g., placing the cleavable linkers between glycomacromolecular blocks presenting different types of carbohydrates, they can tune APG and micellar stability as well as the interaction and cluster formation with a carbohydrate-recognizing lectin. Such dual-responsive glycofunctionalized micelles have wide potential for use in drug delivery applications or for the development as anti-adhesion agents in antiviral and antibacterial treatments.

6.
Macromol Rapid Commun ; : e2400421, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340476

RESUMEN

To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of Artemisia vulgaris seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.

7.
J Nanobiotechnology ; 22(1): 314, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840113

RESUMEN

Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.


Asunto(s)
Calcio , Magnesio , Nanopartículas , Osteogénesis , Osteoporosis , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Magnesio/farmacología , Magnesio/química , Calcio/metabolismo , Animales , Nanopartículas/química , Ratones , Inflamación/tratamiento farmacológico , Huesos/efectos de los fármacos , Huesos/metabolismo , Humanos , Microambiente Celular/efectos de los fármacos , Femenino , FN-kappa B/metabolismo
8.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580995

RESUMEN

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Ratones , Animales , Osteoclastos , Nanomedicina , Osteoporosis/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Huesos/patología , Diferenciación Celular
9.
Sci Technol Adv Mater ; 25(1): 2338785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646148

RESUMEN

Lipid nanoparticles (LNPs) coated with functional and biocompatible polymers have been widely used as carriers to deliver oligonucleotide and messenger RNA therapeutics to treat diseases. Poly(ethylene glycol) (PEG) is a representative material used for the surface coating, but the PEG surface-coated LNPs often have reduced cellular uptake efficiency and pharmacological activity. Here, we demonstrate the effect of pH-responsive ethylenediamine-based polycarboxybetaines with different molecular weights as an alternative structural component to PEG for the coating of LNPs. We found that appropriate tuning of the molecular weight around polycarboxybetaine-modified LNP, which incorporated small interfering RNA, could enhance the cellular uptake and membrane fusion potential in cancerous pH condition, thereby facilitating the gene silencing effect. This study demonstrates the importance of the design and molecular length of polymers on the LNP surface to provide effective drug delivery to cancer cells.


The study presents the unique characteristics of small interfering RNA (siRNA)-loaded lipid nanoparticles (LNPs) with different lengths of PGlu(DET-Car), revealing the length of PGlu(DET-Car) critically affects the formation of a stable LNP, the cellular uptake, membrane fusion, and gene silencing abilities.

10.
Angew Chem Int Ed Engl ; 63(39): e202409782, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888844

RESUMEN

A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.

11.
Small ; 19(43): e2301219, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376845

RESUMEN

2D nanosheets self-assembled with amphiphilic molecules are promising tools for biomedical applications; yet, there are challenges to form and stabilize these nanosheets under complex physiological conditions. Here, the development of lipid nanosheets with high structural stability that can be reversibly converted to cell-sized vesicles by changes in pH within the physiological range robustly, are described. The system is controlled by the membrane disruptive peptide E5 and a cationic copolymer anchored on lipid membranes. It is envisioned that nanosheets formed using the dual anchoring peptide/cationic copolymer system can be employed in dynamic lipidic nanodevices, such as the vesosomes described here, drug delivery systems, and artificial cells.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Péptidos/química , Polímeros/química , Concentración de Iones de Hidrógeno , Lípidos
12.
Nanotechnology ; 34(45)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37544302

RESUMEN

Photodynamic therapy (PDT) has emerged as an efficient strategy for tumor treatment. However, Insufficient amounts of inherent hypoxia and intrinsic hydrogen peroxide (H2O2) in the tumor microenvironment severely constrained PDT, as oxygen is the critical substrate for photosensitivity reaction. Here, a pH-responsive H2O2and O2self-supplying hybrid nanoparticle was designed. Through, the calcium peroxide (CaO2) as carriers loading a chemotherapeutic drug a photosensitizer 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and doxorubicin (DOX), was covered with polyacrylic acid (PAA) to build up a feature material DOX-TAPP-CaO2@OA@PAA (denoted as DTCOP) through the reverse microemulsion method. In the acidic tumor microenvironment conditions exposing the water-sensitive CaO2nanocore to generate hydrogen peroxide (H2O2) and O2, the self-supplied O2alleviates hypoxia to enhance the PDT, and releasing DOX and TAPP. Synthetic characterization shows that the succeeded synthesized Nanocarriers could effectively carry DOX and TAPP to the tumor site and release O2at the low pH of TME. And the experimental results demonstrated that this interpose exogenous oxygen strategy is efficient at inhibition of tumor growth bothin vitroandin vivo. The nanocomposite exhibits excellent biocompatibility and the ability to inhibit tumor growth and has significant potential for the treatment of hypoxic tumors.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Oxígeno/química , Polímeros , Peróxido de Hidrógeno , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
13.
Nanotechnology ; 34(15)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630705

RESUMEN

The construction of an environmentally responsive drug-release system is of great significance for the treatment of special diseases. In particular, the construction of nanomaterials with pH- and thermal-responsiveness, which can effectively encapsulate drugs and control drug release, is becoming hot research. In this study, zwitterionic nanocapsules with stable core-shell structures were synthesized by inverse reversible addition-fragmentation transfer miniemulsion interfacial polymerization. To further study the structure and performance of the nanocapsules, the prepared nanocapsules were characterized by transmission electron microscopy, dynamic light dispersion, and zeta potential analysis. It was found that the nanocapsules had dual pH- and thermal- responsiveness, and the average particle size ranged from 178 to 142 nm when the temperature changed from 25 °C to 40 °C. In addition, bovine serum albumin (BSA) was encapsulated into nanocapsules, and sustained release experiments were conducted at 10 °C and 40 °C. The results showed that nanocapsules as carriers of BSA could achieve the purpose of sustained release of drugs, and showed different sustained release curves at different temperatures. Finally,in vitrocytotoxicity tests were performed to demonstrate the feasibility of their biomedical application. It is believed that the dual pH- and thermal- responsive nanocapsules are promising for drug-controlled release.


Asunto(s)
Nanocápsulas , Nanocápsulas/química , Liberación de Fármacos , Preparaciones de Acción Retardada , Microscopía Electrónica de Transmisión , Albúmina Sérica Bovina , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
14.
Nanomedicine ; 48: 102641, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549554

RESUMEN

Epithelial-mesenchymal transition (EMT) is the culprit of tumor invasion and metastasis. As a critical transcription factor that induces EMT, snail is of great importance in tumor progression, and knocking down its expression by small interfering RNA (siRNA) may inhibit tumor metastasis. Herein, we developed a core-shelled bioinspired low-density lipoprotein (bio-LDL) in which snail siRNA-loaded calcium phosphate nanoparticles were wrapped as the core and doxorubicin was embedded in the outer phospholipids modified with a synthetic peptide of apoB100 targeting LDL receptor-abundant tumor cells. Bio-LDL exhibited pH-responsive release, lysosomal escape ability, enhanced cytotoxicity and apoptotic induction. Bio-LDL could significantly inhibit the expression of snail and regulate EMT-related proteins to reduce tumor migration and invasion in vitro. Bio-LDL also displayed favorable tumor targeting and synergistic inhibition of tumor growth and metastasis in vivo. Therefore, the multifunctional bio-LDL will be a promising co-delivery vector and holds potential value for clinical translation.


Asunto(s)
Lipoproteínas LDL , Neoplasias , Humanos , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico , Muerte Celular , ARN Interferente Pequeño , Línea Celular Tumoral , Transición Epitelial-Mesenquimal
15.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375175

RESUMEN

pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, N-dimethylamine (UC22AMPM), with metal salts (i.e., AlCl3, CrCl3, and FeCl3). The effects of the surfactant/metal salt mixing ratio and the type of metal ions on the viscoelasticity and phase behavior of fluids were systematically examined by appearance observation and rheometry. To elucidate the role of metal ions, the rheological properties between AlCl3- and HCl-UC22AMPM systems were compared. Results showed the above metal salt evoked the low-viscosity UC22AMPM dispersions to form viscoelastic solutions. Similar to HCl, AlCl3 could also protonate the UC22AMPM into a cationic surfactant, forming wormlike micelles (WLMs). Notably, much stronger viscoelastic behavior was evidenced in the UC22AMPM-AlCl3 systems because the Al3+ as metal chelators coordinated with WLMs, promoting the increment of viscosity. By tuning the pH, the macroscopic appearance of the UC22AMPM-AlCl3 system switched between transparent solutions and milky dispersion, concomitant with a viscosity variation of one order of magnitude. Importantly, the UC22AMPM-AlCl3 systems showed a constant viscosity of 40 mPa·s at 80 °C and 170 s-1 for 120 min, indicative of good heat and shear resistances. The metal-containing viscoelastic fluids are expected to be good candidates for high-temperature reservoir hydraulic fracturing.

16.
Angew Chem Int Ed Engl ; 62(42): e202310743, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37599266

RESUMEN

Retaining emulsions stable at high acidity and salinity is still a great challenge. Here, we report a novel multi-headgroup surfactant (C3 H7 -NH+ (C10 COOH)2 , di-UAPAc) which can be reversibly transformed among cationic, anionic and zwitterionic forms upon pH variation. Stable oil-in-dispersion (OID) emulsions in strong acidity (pH=2) can be co-stabilized by low concentrations of di-UAPAc and silica nanoparticles. High salinity at pH=2 improves the adsorption of di-UAPAc on silica particles through hydrogen bonding, resulting in the transformation of OID emulsions into Pickering emulsions. Moreover, emulsification/demulsification and interconversion between OID and Pickering emulsions together with control of the viscosity and droplet size can be triggered by pH. The present work provides a new protocol for designing surfactants for various applications in harsh aqueous media, such as strong acidity and high salinity, involved in oil recovery and sewerage treatments.

17.
Cancer Sci ; 113(12): 4339-4349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36047963

RESUMEN

Lipid nanoparticles (LNPs) have been commonly used as a vehicle for nucleic acids, such as small interfering RNA (siRNA); the surface modification of LNPs is one of the determinants of their delivery efficiency especially in systemic administration. However, the applications of siRNA-encapsulated LNPs are limited due to a lack effective systems to deliver to solid tumors. Here, we report a smart surface modification using a charge-switchable ethylenediamine-based polycarboxybetaine for enhancing tumor accumulation via interaction with anionic tumorous tissue constituents due to selective switching to cationic charge in response to cancerous acidic pH. Our polycarboxybetaine-modified LNP could enhance cellular uptake in cancerous pH, resulting in facilitated endosomal escape and gene knockdown efficiency. After systemic administration, the polycarboxybetaine-modified LNP accomplished high tumor accumulation in SKOV3-luc and CT 26 subcutaneous tumor models. The siPLK-1-encapsulated LNP thereby accomplished significant tumor growth inhibition. This study demonstrates a promising potential of the pH-responsive polycarboxybetaine as a material for modifying the surface of LNPs for efficient nucleic acid delivery.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , ARN Interferente Pequeño/genética , Lípidos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Concentración de Iones de Hidrógeno
18.
Chembiochem ; 23(24): e202200371, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35968882

RESUMEN

Prebiotically plausible single-chain amphiphiles are enticing as model protocellular compartments to study the emergence of cellular life, owing to their self-assembling properties. Here, we investigated the self-assembly behaviour of mono-N-dodecyl phosphate (DDP) and mixed systems of DDP with 1-dodecanol (DDOH) at varying pH conditions. Membranes composed of DDP showed pH-responsive vesicle formation in a wide range of pH with a low critical bilayer concentration (CBC). Further, the addition of DDOH to DDP membrane system enhanced vesicle formation and stability in alkaline pH regimes. We also compared the high-temperature behaviour of DDP and DDP:DDOH membranes with conventional fatty acid membranes. Both, DDP and DDP:DDOH mixed membranes possess packing that is similar to decanoic acid membrane. However, the micropolarity of these systems is similar to phospholipid membranes. Finally, the pH-dependent modulation of different phospholipid membranes doped with DDP was also demonstrated to engineer tuneable membranes with potential translational implications.


Asunto(s)
Modelos Biológicos , Fosfatos , Membranas/química , Concentración de Iones de Hidrógeno , Fosfolípidos
19.
Macromol Rapid Commun ; 43(23): e2200606, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35995598

RESUMEN

Controlling the formation and directional growth of hydrogels is a challenge. In this paper, a new methodology to program the gel formation both over space and time is proposed, using the diffusion and subsequent hydrolysis of 1,1'-carbonyldiimidazole from an immiscible organic solution to the aqueous gel media.


Asunto(s)
Hidrogeles , Difusión , Catálisis , Reología
20.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269867

RESUMEN

The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4-254.2 nm with PDI ranging between 0.279-0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.


Asunto(s)
Abelmoschus , Antineoplásicos , Quitosano , Nanopartículas , Antineoplásicos/farmacología , Quitosano/química , Portadores de Fármacos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Metotrexato/toxicidad , Nanopartículas/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda