Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
New Phytol ; 242(2): 392-423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409806

RESUMEN

A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.


Asunto(s)
Ecosistema , Fósiles , Ecología , Plantas , Fenotipo
2.
New Phytol ; 241(2): 937-949, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644727

RESUMEN

The first land ecosystems were composed of organisms considered simple in nature, yet the morphological diversity of their flora was extraordinary. The biological significance of this diversity remains a mystery largely due to the absence of feasible study approaches. To study the functional biology of Early Devonian flora, we have reconstructed extinct plants from fossilised remains in silico. We explored the morphological diversity of sporangia in relation to their mechanical properties using finite element method. Our approach highlights the impact of sporangia morphology on spore dispersal and adaptation. We discovered previously unidentified innovations among early land plants, discussing how different species might have opted for different spore dispersal strategies. We present examples of convergent evolution for turgor pressure resistance, achieved by homogenisation of stress in spherical sporangia and by torquing force in Tortilicaulis-like specimens. In addition, we show a potential mechanism for stress-assisted sporangium rupture. Our study reveals the deceptive complexity of this seemingly simple group of organisms. We leveraged the quantitative nature of our approach and constructed a fitness landscape to understand the different ecological niches present in the Early Devonian Welsh Borderland flora. By connecting morphology to functional biology, these findings facilitate a deeper understanding of the diversity of early land plants and their place within their ecosystem.


Asunto(s)
Ecosistema , Embryophyta , Plantas , Reproducción
3.
Ann Bot ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982647

RESUMEN

BACKGROUND AND AIMS: The complexity of fossil forest ecosystems is difficult to reconstruct due to the fragmentary nature of the fossil record. However, detailed morpho-anatomical studies of well-preserved individual fossils can provide key information on tree growth and ecology, including in biomes with no modern analog such as the lush forests that developed in the polar regions during past greenhouse climatic episodes. METHODS: We describe an unusual-looking stem from Middle Triassic (ca 240 Ma) deposits of Antarctica with over 100 very narrow growth-rings and conspicuous persistent vascular traces through the wood. Sections of the specimen were prepared using the cellulose acetate peel technique to determine its systematic affinities and analyse its growth. KEY RESULTS: The new fossil shows similarities with the form genus Woodworthia and with conifer stems from the Triassic of Antarctica, and is assigned to the conifers. Vascular traces are interpreted as those of small branches retained on the trunk. Growth-ring analyses reveal one of the slowest growth rates reported in the fossil record, with an average of 0.2 mm/season. While the tree was growing within the Triassic polar circle, sedimentological data and growth-ring information from other fossil trees, including from the same locality, support the presence of favorable conditions in the region. CONCLUSIONS: The specimen is interpreted as a dwarf conifer tree that grew under a generally favorable regional climate but whose growth was suppressed due to stressful local site conditions. This is the first time that a tree with suppressed growth is identified as such in the fossil record, providing new insights on the structure of polar forests under greenhouse climates and, more generally, on the complexity of tree communities in deep time.

4.
Am J Bot ; 111(2): e16268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050806

RESUMEN

PREMISE: Fossil seeds recovered from the Early Cretaceous of Mongolia and Inner Mongolia, China, are described and assigned to Mongolitria gen. nov., a new genus of gymnosperm seed. METHODS: Abundant lignitized seeds along with compression specimens isolated from the matrix were studied using a combination of scanning electron microscopy, anatomical sectioning, light microscopy, synchrotron radiation X-ray microtomography, and cuticle preparations. A single permineralized seed was examined by light microscopy of cellulose acetate peels and X-ray microtomography. RESULTS: Two species are recognized, Mongolitria friisae sp. nov. and Mongolitria exesum sp. nov. Both seeds are orthotropous with a short apical micropyle and a small, basal, circular attachment scar. The thick sclerenchymatous integument has a consistently three-parted organization and about 20 conspicuous longitudinal ribs on the surface. Mongolitria exesum differs from M. friisae primarily in its much larger size and thicker seed coat, which also preserves clear evidence of insect damage. CONCLUSIONS: Mongolitria is similar to other fossil seeds that have been assigned to Cycadales, but displays a unique combination of characters not found in any living or extinct cycadaceous plant, leaving its higher-level systematic affinities uncertain. Germination apparently involved splitting of the integument into three valves. Mongolitria was prominent among the plant parts accumulating in peat swamps in eastern Asia during the Early Cretaceous.


Asunto(s)
Evolución Biológica , Semillas , Microscopía Electrónica de Rastreo , China , Cycadopsida , Fósiles , Filogenia
5.
Am J Bot ; 111(7): e16372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010697

RESUMEN

PREMISE: Characterization and phylogenetic integration of fossil angiosperms with uncertain affinities is relatively limited, which may obscure the diversity of extinct higher taxa in the flowering plant tree of life. The order Cornales contains a diversity of extinct taxa with uncertain familial affinities that make it an ideal group for studying turnover in angiosperms. Here, we describe a new extinct genus of Cornales unassignable to an extant family and conduct a series of phylogenetic analyses to reconstruct relationships of fossils across the order. METHODS: Two permineralized endocarps were collected from the Cedar District Formation (Campanian, 82-80 Ma) of Sucia Island, State of Washington, United States. Fossils were sectioned with the cellulose acetate peel technique and incorporated into a morphological dataset. To assess the utility of this dataset to accurately place taxa in their respective clades, we used a series of phylogenetic pseudofossilization analyses. We then conducted a total-evidence analysis and a scaffold-based approach to determine relationships of fossils. RESULTS: Based on their unique combination of characters, the fossils represent a new genus, Fenestracarpa washingtonensis gen. nov. et sp. nov. Pseudofossilization analyses indicate that our morphological dataset can be used to accurately recover taxa at the major clade to family level, generally with moderate to high support. The total-evidence and scaffold-based analyses recovered Fenestracarpa and other fossil genera in an entirely extinct clade within Cornales. CONCLUSIONS: Our findings increase the reported diversity of extinct Cornales and indicate that the order's initial radiation likely included the divergence of an extinct higher clade that endured the end-Cretaceous Mass extinction but perished during the Cenozoic.


Asunto(s)
Extinción Biológica , Fósiles , Filogenia , Fósiles/anatomía & histología , Magnoliopsida/anatomía & histología , Magnoliopsida/genética , Magnoliopsida/clasificación , Washingtón
6.
New Phytol ; 239(2): 477-493, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37103892

RESUMEN

This review explores the evolution of extant South American tropical biomes, focusing on when and why they developed. Tropical vegetation experienced a radical transformation from being dominated by non-angiosperms at the onset of the Cretaceous to full angiosperm dominance nowadays. Cretaceous tropical biomes do not have extant equivalents; lowland forests, dominated mainly by gymnosperms and ferns, lacked a closed canopy. This condition was radically transformed following the massive extinction event at the Cretaceous-Paleogene boundary. The extant lowland tropical rainforests first developed at the onset of the Cenozoic with a multistratified forest, an angiosperm-dominated closed canopy, and the dominance of the main families of the tropics including legumes. Cenozoic rainforest diversity has increased during global warming and decreased during global cooling. Tropical dry forests emerged at least by the late Eocene, whereas other Neotropical biomes including tropical savannas, montane forests, páramo/puna, and xerophytic forest are much younger, greatly expanding during the late Neogene, probably at the onset of the Quaternary, at the expense of the rainforest.


Asunto(s)
Helechos , Magnoliopsida , Árboles , Ecosistema , Bosques , América del Sur , Clima Tropical
7.
New Phytol ; 237(5): 1550-1557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484141

RESUMEN

The terrestrial biota is a crucial part of the long-term carbon cycle via the deposition of biomass as coal and other sedimentary organic matter and the impact of plants, fungi, and microbial life on the weathering of silicate minerals. Understanding these processes and their changes through time requires both geochemical modeling of the system as well as expertise in the living and fossil biotas and their ecological interactions, but details of these components are often lost in translation between disciplines. Here, we highlight misconceptions of the long-term carbon cycle that most frequently infiltrate the literature and hamper progress: mass balance requirements, the nature and duration of perturbations, opposing timescale constraints on biological and geological processes, and the role of models.


Asunto(s)
Minerales , Silicatos , Plantas , Biomasa , Ciclo del Carbono , Carbono
8.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960534

RESUMEN

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Asunto(s)
Capsicum , Solanum , Fósiles , Frutas , América del Sur , Filogenia
9.
New Phytol ; 238(6): 2668-2684, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651063

RESUMEN

Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely. We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia. We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny. The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.


Asunto(s)
Fósiles , Plantas , Filogenia , Clima Desértico , Aclimatación
10.
Am J Bot ; 110(5): e16163, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014186

RESUMEN

PREMISE: The Lower Cretaceous Crato Konservat-Lagerstätte (CKL) preserves a rich flora that includes early angiosperms from northern Gondwana. From this area, the recently described fossil genus Santaniella was interpreted as a ranunculid (presumably Ranunculaceae). However, based on our examination of an additional specimen and a new phylogenetic analysis, we offer an alternative interpretation. METHODS: The new fossil was collected from an active quarry for paving stones in the state of Ceará, northeastern Brazil. We assessed support for alternative phylogenetic hypotheses using a combined analysis of morphological data and DNA sequence data using Bayesian inference. We used a consensus network to visualize the posterior distribution of trees, and we used RoguePlot to illustrate the support for alternative positions on a scaffold tree. RESULTS: The new material includes a flower-like structure not present in the original material and also includes follicles preserved at early stages of development. The flower-like structure is a compact terminal cluster of elliptical sterile laminar organs surrounding internal filamentous structures that occur on flexuous axes. Phylogenetic analyses did not support the fossil placement among eudicots. Instead, Santaniella appears to belong in the magnoliid clade. CONCLUSIONS: The presence of seeds in a marginal-linear placentation and enclosed in a follicle supports the fossil as an angiosperm. However, even though most characters are clearly recognizable, its combination of characters does not provide strong support for a close relationship to any extant order of flowering plants. Its position in the magnoliid clade is intriguing and, based on plicate carpels, it is definitely a mesangiosperm.


Asunto(s)
Fósiles , Magnoliopsida , Filogenia , Magnoliopsida/anatomía & histología , Brasil , Teorema de Bayes
11.
J Exp Bot ; 73(13): 4273-4290, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35394022

RESUMEN

Systematics reconstructs tempo and mode in biological evolution by resolving the phylogenetic fabric of biodiversity. The staggering duration and complexity of evolution, coupled with loss of information (extinction), render exhaustive reconstruction of the evolutionary history of life unattainable. Instead, we sample its products-phenotypes and genotypes-to generate phylogenetic hypotheses, which we sequentially reassess and update against new data. Current consensus in evolutionary biology emphasizes fossil integration in total-evidence analyses, requiring in-depth understanding of fossils-age, phenotypes, and systematic affinities-and a detailed morphological framework uniting fossil and extant taxa. Bryophytes present a special case: deep evolutionary history but sparse fossil record and phenotypic diversity encompassing small dimensional scales. We review how these peculiarities shape fossil inclusion in bryophyte systematics. Paucity of the bryophyte fossil record, driven primarily by phenotypic (small plant size) and ecological constraints (patchy substrate-hugging populations), and incomplete exploration, results in many morphologically isolated, taxonomically ambiguous fossil taxa. Nevertheless, instances of exquisite preservation and pioneering studies demonstrate the feasibility of including bryophyte fossils in evolutionary inference. Further progress will arise from developing extensive morphological matrices for bryophytes, continued exploration of the fossil record, re-evaluation of previously described fossils, and training specialists in identification and characterization of bryophyte fossils, and in bryophyte morphology.


Asunto(s)
Briófitas , Fósiles , Biodiversidad , Evolución Biológica , Briófitas/genética , Filogenia
12.
Am J Bot ; 108(10): 2066-2095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34664712

RESUMEN

PREMISE: Cladoxylopsids formed Earth's earliest forests and gave rise to the ancestors of sphenopsids and ferns. Lower Devonian (Emsian) strata of the Battery Point Formation (Quebec, Canada) contain new anatomically preserved cladoxylopsids, one of which is described in this article. To assess the phylogenetic position of this fossil and address questions of cladoxylopsid phylogeny, we conducted a comprehensive phylogenetic study. METHODS: Permineralized axes were studied in serial sections using the cellulose acetate peel technique. We evaluated phylogenetic relationships among cladoxylopsids using a data set of 36 new morphological characters and 31 species, in parsimony-constrained analyses. RESULTS: We describe Adelocladoxis praecox gen. et sp. nov., a cladoxylopsid with small actinostelic axes bearing dichotomously branched, helically arranged ultimate appendages and fusiform sporangia. Adelocladoxis provides the oldest evidence of cladoxylopsid anatomy, including ultimate appendages and sporangia. In agreement with non-phylogenetic classification schemes, our phylogenetic analysis resolves a basal grade of iridopterids and a clade of cladoxylopsids s.s., which includes a pseudosporochnalean cladoxylopsid clade, a cladoxylalean cladoxylopsid clade, and Adelocladoxis. CONCLUSIONS: Our phylogenetic analysis illuminates aspects of tempo and mode of evolution in the cladoxylopsid plexus. Originating prior to the Emsian, cladoxylopsids reached global distribution by the Frasnian. Iridopterids and cladoxylopsids s.s. radiated in the Emsian-Eifelian. The sequence of character change recovered by our phylogeny supports a transition from actinostelic protosteles to dissected steles, associated with an increase in xylem rib number and medullation generating a central parenchymatous area.


Asunto(s)
Helechos , Fósiles , Evolución Biológica , Filogenia , Quebec , Esporangios
13.
Am J Bot ; 108(12): 2435-2451, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636420

RESUMEN

PREMISE: Reconstructing the light environment and architecture of the plant canopy from the fossil record requires the use of proxies, such as those derived from cell wall undulation, cell size, and carbon isotopes. All approaches assume that plant taxa will respond predictably to changes in light environments. However, most species-level studies looking at cell wall undulation only consider "sun" or "shade" leaves; therefore, we need a fully quantitative taxon-specific method. METHODS: We quantified the response of cell wall undulation, cell size, and carbon isotopes of Platanus occidentalis using two experimental setups: (1) two growth chambers at low and high light and (2) a series of outdoor growth experiments using green and black shade cloth at different densities. We then developed and applied a proxy for daily light integral (DLI) to fossil Platanites leaves from two early Paleocene floras from the San Juan Basin in New Mexico. RESULTS: All traits responded to light environment. Cell wall undulation was the most useful trait for reconstructing DLI in the geological record. Median reconstructed DLI from early Paleocene leaves was ~44 mol m-2 d-1 , with values from 28 to 54 mol m-2 d-1 . CONCLUSIONS: Cell wall undulation of P. occidentalis is a robust, quantifiable measurement of light environment that can be used to reconstruct the paleo-light environment from fossil leaves. The distribution of high DLI values from fossil leaves may provide information on canopy architecture; indicating that either (1) most of the canopy mass is within the upper portion of the crown or (2) leaves exposed to more sunlight are preferentially preserved.


Asunto(s)
Fotosíntesis , Árboles , Isótopos de Carbono , Hojas de la Planta , Luz Solar
14.
Am J Bot ; 108(1): 22-36, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33482683

RESUMEN

The phrase "Darwin's abominable mystery" is frequently used with reference to a range of outstanding questions about the evolution of the plant group today known as the angiosperms. Here, I seek to more fully understand what prompted Darwin to coin the phrase in 1879, and the meaning he attached to it, by surveying the systematics, paleobotanical records, and phylogenetic hypotheses of his time. In the light of this historical research, I argue that Darwin was referring to the origin only of a subset of what are today called angiosperms: a (now obsolete) group equivalent to the "dicotyledons" of the Hooker and Bentham system. To Darwin and his contemporaries, the dicotyledons' fossil record began abruptly and with great diversity in the Cretaceous, whereas the gymnosperms and monocotyledons were thought to have fossil records dating back to the Carboniferous or beyond. Based on their morphology, the dicotyledons were widely seen by botanists in Darwin's time (unlike today) as more similar to the gymnosperms than to the monocotyledons. Thus, morphology seemed to point to gymnosperm progenitors of dicotyledons, but this hypothesis made the monocotyledons, given their (at the time) apparently longer fossil record, difficult to place. Darwin had friendly disagreements about the mystery of the dicotyledons' abrupt appearance in the fossil record with others who thought that their evolution must have been more rapid than his own gradualism would allow. But the mystery may have been made "abominable" to him because it was seen by some contemporary paleobotanists, most notably William Carruthers, the Keeper of Botany at the British Museum, as evidence for divine intervention in the history of life. Subsequent developments in plant systematics and paleobotany after 1879 meant that Darwin's letter was widely understood to be referring to the abrupt appearance of all angiosperms when it was published in 1903, a meaning that has been attached to it ever since.


Asunto(s)
Botánica , Magnoliopsida , Evolución Biológica , Fósiles , Historia del Siglo XIX , Masculino , Filogenia
15.
Am J Bot ; 108(9): 1745-1760, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34495546

RESUMEN

PREMISE: The conifer Geinitzia reichenbachii was a common member of the Cretaceous Laurasian floras. However, the histology of G. reichenbachii leafy axes was never described in detail, and our knowledge of its paleoecology remains very limited. Using new and exquisitely preserved silicified material from the Upper Cretaceous of western France, we describe G. reichenbachii from the gross morphology to the cellular scale, then discuss paleoecological and taphonomical implications. METHODS: We examined specimens from two localities in western France (Claix and Moragne) using propagation phase-contrast X-ray synchrotron microtomography. RESULTS: The cuticle and the inner tissues of leafy axes are preserved in three dimensions. Epidermis, hypodermis, palisade parenchyma, spongy parenchyma, transfusion tracheids, and most of tissues of the vascular cylinder are clearly discernible. The numerous resin ducts are sometimes filled by persisting resin. Additionally, surfaces of some leaves preserved drops and flows of resin. CONCLUSIONS: Depositional environmental context combined with histological features of G. reichenbachii suggest that this conifer was adapted to a range of marginal-littoral ecosystems including those open to the sea paleoenvironments and innermost ones influenced by strong continental inputs. Geinitzia reichenbachii was adapted to withstand intense sunlight, hot temperatures coupled with salty sea wind, and dry conditions. The frequent amber-bearing beds in the Cretaceous from western France with Geinitzia as a main component of the associated floras raises the possibility of a role for Geinitzia in the production of the "Charentese amber".


Asunto(s)
Tracheophyta , Ámbar , Ecosistema , Fósiles , Sincrotrones , Microtomografía por Rayos X , Rayos X
16.
Am J Bot ; 108(8): 1441-1463, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34431508

RESUMEN

PREMISE: Microclimatic differences between the periphery and the interior of tree crowns result in a variety of adaptive leaf macromorphological and anatomical features. Our research was designed to reveal criteria for sun/shade leaf identification in two species of evergreen oaks, applicable to both modern and fossil leaves. We compared our results with those in other species similarly studied. METHODS: For both Quercus bambusifolia and Q. myrsinifolia (section Cyclobalanopsis), leaves from single mature trees with well-developed crowns were collected in the South China Botanical Garden, Guangzhou, China. We focus on leaf characters often preserved in fossil material. SVGm software was used for macromorphological measurement. Quantitative analyses were performed and box plots generated using R software with IDE Rstudio. Leaf cuticles were prepared using traditional botanical techniques. RESULTS: Principal characters for distinguishing shade and sun leaves in the studied oaks were identified as leaf lamina length to width ratio (L/W), and the degree of development of venation networks. For Q. myrsinifolia, shade and sun leaves differ in tooth morphology and the ratio of toothed lamina length to overall lamina length. The main epidermal characters are ordinary cell size and anticlinal wall outlines. For both species, plasticity within shade leaves exceeds that of sun leaves. CONCLUSIONS: Morphological responses to sun and shade in the examined oaks are similar to those in other plant genera, pointing to useful generalizations for recognizing common foliar polymorphisms that must be taken into account when determining the taxonomic position of both modern and fossil plants.


Asunto(s)
Quercus , China , Hojas de la Planta , Plantas , Árboles
17.
Am J Bot ; 108(8): 1500-1524, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34458984

RESUMEN

PREMISE: The Fagaceae comprise around 1000 tree species in the Northern Hemisphere. Despite an extensive fossil pollen record, reconstructing biogeographic patterns is hampered because it is difficult to achieve good taxonomic resolution with light microscopy alone. We investigate dispersed pollen of Fagaceae from the Miocene Søby flora, Denmark. We explore the latitudinal gradient in Fagaceae distribution during the Miocene Climatic Optimum (MCO) in Europe and the Northern Hemisphere to compare it with the Eocene Warmhouse and the present. METHODS: We investigated dispersed pollen using light and scanning electron microscopy. We assessed biogeographic patterns in Fagaceae during two warm periods in Earth history (MCO, Eocene) and the present. RESULTS: Eight species of Fagaceae were recognized in the Søby flora. Of these, Fagus had a continuous Mediterranean to subarctic distribution during MCO; Quercus sect. Cerris and castaneoids had northern limits in Denmark, and evergreen Quercus sect. Ilex in Central Europe. In a northern hemispheric context, Fagus and sections of Quercus had more northerly distribution limits during Eocene and MCO with maximum northward extensions during Eocene (Fagus, castaneoids) or Oligo-Miocene (Quercus sects. Cerris and Ilex). The known distribution of the extinct Tricolporopollenites theacoides during MCO included Central Europe and East China, while this taxon thrived in South China during Eocene. CONCLUSIONS: More northerly distributions during MCO and Eocene probably were determined by temperature. In contrast, fossil occurrences in areas that are arid or semi-humid today were determined by maritime conditions in these areas (western North America, Central Asia) during the Cenozoic.


Asunto(s)
Fósiles , Quercus , China , Dinamarca , Filogenia , Polen
18.
Am J Bot ; 108(3): 472-494, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624301

RESUMEN

PREMISE: Fossils are essential for understanding evolutionary history because they provide direct evidence of past diversity and geographic distributions. However, resolving systematic relationships between fossils and extant taxa, an essential step for many macroevolutionary studies, requires extensive comparative work on morphology and anatomy. While palms (Arecaceae) have an excellent fossil record that includes numerous fossil fruits, many are difficult to identify due in part to limited comparative data on modern fruit structure. METHODS: We studied fruits of 207 palm species, representing nearly every modern genus, using X-ray microcomputed tomography. We then developed a morphological data set to test whether the fossil record of fruits can improve our understanding of palm diversity in the deep past. To evaluate the accuracy with which this data set recovers systematic relationships, we performed phylogenetic pseudofossilization analyses. We then used the data set to investigate the phylogenetic relationships of five previously published fossil palm fruits. RESULTS: Phylogenetic analyses of fossils and pseudofossilization of extant taxa show that fossils can be placed accurately to the tribe and subtribe level with this data set, but node support must be considered. The phylogenetic relationships of the fossils suggest origins of many modern lineages in the Cretaceous and early Paleogene. Three of these fossils are suitable as new node calibrations for palms. CONCLUSIONS: This work improves our knowledge of fruit structure in palms, lays a foundation for applying fossil fruits to macroevolutionary studies, and provides new insights into the evolutionary history and early diversification of Arecaceae.


Asunto(s)
Fósiles , Frutas , Evolución Biológica , Filogenia , Lectura , Microtomografía por Rayos X
19.
New Phytol ; 228(1): 344-360, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32400897

RESUMEN

The pinnately lobed Aptian leaf fossil Mesodescolea plicata was originally described as a cycad, but new evidence from cuticle structure suggests that it is an angiosperm. Here we document the morphology and cuticle anatomy of Mesodescolea and explore its significance for early angiosperm evolution. We observed macrofossils and cuticles of Mesodescolea with light, scanning electron and transmission electron microscopy, and used phylogenetic methods to test its relationships among extant angiosperms. Mesodescolea has chloranthoid teeth and tertiary veins forming elongate areoles. Its cuticular morphology and ultrastructure reject cycadalean affinities, whereas its guard cell shape and stomatal ledges are angiospermous. It shares variable stomatal complexes and epidermal oil cells with angiosperm leaves from the lower Potomac Group. Phylogenetic analyses and hypothesis testing support its placement within the basal ANITA grade, most likely in Austrobaileyales, but it diverges markedly in leaf form and venation. Although many Early Cretaceous angiosperms fall within the morphological range of extant taxa, Mesodescolea reveals unexpected early morphological and ecophysiological trends. Its similarity to other Early Cretaceous lobate leaves, many identified previously as eudicots but in some cases pre-dating the appearance of tricolpate pollen, may indicate that Mesodescolea is part of a larger extinct lineage of angiosperms.


Asunto(s)
Magnoliopsida , Evolución Biológica , Cycadopsida , Fósiles , Magnoliopsida/genética , Filogenia , Hojas de la Planta
20.
New Phytol ; 228(1): 376-392, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32446281

RESUMEN

Fossil grass silica short cell phytoliths (GSSCP) have been used to reconstruct the biogeography of Poaceae, untangle crop domestication history and detect past vegetation shifts. These inferences depend on accurately identifying the clade to which the fossils belong. Patterns of GSSCP shape and size variation across the family have not been established and current classification methods are subjective or based on a 2D view that ignores important 3D shape variation. Focusing on Poaceae subfamilies Anomochlooideae, Pharoideae, Pueliodieae, Bambusoideae and Oryzoideae, we observed in situ GSSCP to establish their orientation and imaged isolated GSSCP using confocal microscopy to produce 3D models. 3D geometric morphometrics was used to analyze GSSCP shape and size. Classification models were applied to GSSCP from Eocene sediments from Nebraska, USA, and Anatolia, Turkey. There were significant shape differences between nearly all recognized GSSCP morphotypes and between clades with shared morphotypes. Most of the Eocene GSSCP were classified as woody bamboos with some distinctive Nebraska GSSCP classified as herbaceous bamboos. 3D morphometrics hold great promise for GSSCP classification. It accounts for the complete GSSCP shape, automates size measurements and accommodates the complete range of morphotypes within a single analytical framework.


Asunto(s)
Fósiles , Poaceae , Filogenia , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda