Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Chem Biodivers ; : e202400415, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034296

RESUMEN

To evaluate the biotransformation and the mechanism of binding as well as the biological impact of metal-based- drugs involving Pd(II), known to have high potency and low toxicity for use as anticancer therapeutics, in the present study, a newly synthesized palladium (II) complex, [Pd(CPF)(OH2)2]2+ (where CPF is ciprofloxacin), has been synthesized and characterized and thoroughly evaluated for its antimicrobial properties. The interaction of the diaqua complex with CT-DNA and BSA was studied through various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, ethanol precipitation, and molecular docking studies. The results indicate that the complex exhibits a robust binding interaction with CT-DNA, possibly via minor groove binding and (or) electrostatic interactions. Furthermore, the complex displays good binding affinity towards BSA, indicating its potential as a target for DNA and BSA in biological media. The invitro cytotoxicity assay reveals that this complex can be classified as a promising cell growth inhibitor against MCF-7, HT-29, and A549. Thus, this newly synthesized palladium (II) complex is a promising candidate for further exploration as a potential anticancer therapeutic.

2.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998961

RESUMEN

This article reports on the extraction of palladium(II) from hydrochloric acid (HCl) solutions using polymer inclusion membranes (PIMs) containing tetrabutylammonium bromide (TBAB) as the ion carrier. The membranes were based on cellulose triacetate (CTA) as the polymer support. The main aim of this study is to determine the possibility of TBAB's application as the effective ion carrier/extractant of Pd(II) from hydrochloric acid solutions. At first, the effect of the hydrochloric acid concentration in the aqueous phase on palladium(II) extraction was investigated. Next, cellulose triacetate membranes with TBAB as the carrier were prepared and applied for the recovery of Pd(II) from HCl solutions. As a result of the investigations, the optimal composition of the receiving phase was determined to be 0.5 M thiourea in 0.1 M hydrochloric acid. The effect of the acid concentration in the source phase was investigated. The results show a linear decrease in the permeability coefficient and initial flux of palladium(II) with an increase in the hydrochloric acid concentration in the source phase. The separation of Pd(II) from Pt(IV) from the hydrochloric acid solution was also studied. The transport rate of Pd(II) was higher than Pt(IV). The separation coefficient SPd/Pt was 1.3. The results show that transport through PIMs with TBAB can be used as an effective method to recover Pd(II) from hydrochloric acid, especially at a low concentration of this acid.

3.
Angew Chem Int Ed Engl ; 63(1): e202315572, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985377

RESUMEN

Through coordination-driven self-assembly, aesthetically captivating structures can be formed by tuning the length or flexibility of various components. The self-assembly of an elongated rigid terphenyl-based tetra-pyridyl ligand (L1) with a cis-Pd(II) acceptor produces an [M12 L16 ]24+ triangular orthobicupola structure (1). When flexibility is introduced into the ligand by the incorporation of a -CH2 - group between the dipyridylamine and terphenyl rings in the ligand (L2), anunique [M8 L24 ]16+ water-soluble 'intertwined cubic structure' (2) results. The inherent flexibility of ligand L2 might be the key factor behind the formation of the thermodynamically stable and 'intertwined cubic structure' in this scenario. This research showcases the ability to design and fabricate novel, topologically distinctive molecular structures by a straightforward and efficient approach.

4.
Chemistry ; 29(63): e202302188, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37566451

RESUMEN

This work reports the effect of Pd(II) as chemical effector on an acylhydrazone-based dynamic covalent library (DCL) in biphasic systems (water/chloroform). The constituents of the DCL are self-built and distributed in the two phases, two of them are lipophilic enough to play the role of a carrier agent that may transfer Pd(II) from the aqueous phase to the organic phase. Upon addition of Pd(II), the DCL of components exhibits a strong amplification of the constituent that is the most adapted to stabilize Pd(II) in chloroform as well as its agonist in water. This evolution is driven by the combination of the interaction of the DCL with Pd(II) and the presence of the two phases. This study paves the way to a novel approach for liquid/liquid extraction and metal recovery by means of adaptive extractant species generated in situ by a DCL.

5.
Biometals ; 36(5): 1109-1123, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37184626

RESUMEN

The synthesis, substitution kinetics and DNA/BSA interactions of four cationic Pd(II) complexes [Pd(1)Cl]BF4 (Pd1), [Pd(2)Cl]BF4 (Pd2), [Pd(3)Cl]BF4 (Pd3) and [Pd(4)Cl]BF4 (Pd4), derived from the reaction of [PdCl2(NCCH3)2] with ligands 2,6-bis(3-methylimidazolium-1-yl)pyridine dibromide (1), 2,6-bis(3-ethylimidazolium-1-yl)pyridine dibromide (2), 2,6-bis(1-methylimidazole-2-thione)pyridine (3), and 2,6-bis(1-ethylimidazole-2-thione)pyridine (4), respectively are reported. The complexes were characterised by various spectroscopic techniques and single crystal X-ray diffraction for compound Pd2. Kinetic reactivity of the complexes with the biologically relevant nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-monophosphate sodium salt (5'-GMP) was in the order: Pd1 > Pd2 > Pd3 > Pd4, which was largely dependent on the electronic and ring size of the chelate ligands, consistent with Density functional theory (DFT) simulations. The interactions of the complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) binding titrations showed strong binding. Both the experimental and in silico data reveal CT-DNA intercalative binding mode.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Complejos de Coordinación/química , Paladio/química , Ligandos , Tionas , Piridinas/química , Electrónica , ADN/química , Albúmina Sérica Bovina/química , Antineoplásicos/química , Cinética
6.
Chem Biodivers ; 20(5): e202201043, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37040122

RESUMEN

Biological activities of a series of palladium(II) complexes (M1-M9) bearing N∩ N, N∩ S, and N∩ O chelating ligands are reported. The palladium complexes were tested for their cytotoxic properties against human cervical cancer (HeLa) cells and antibacterial activity against Gm+ve and Gm-ve bacteria. Among the palladium complexes studied (M1-M9), the complex M5, M8, and M9 were found to be more effective in inhibiting the proliferation of HeLa cells. Hence, these complexes were further investigated for their potential role in cellular damage and apoptosis. DCFDA staining, Rhodamine 123 staining and DNA cleavage assay revealed that complex M5, M8 and M9 induced apoptotic cell death in HeLa cells through ROS generation, DNA damage and mitochondrial depolarization. Computational and titration studies also indicated strong electrostatic interaction with DNA groove. Most of the complexes exhibited good antibacterial activity against both Gm+ve and Gm-ve bacteria. The antibacterial activity of the compounds could not be correlated with their anticancer activity indicating a differential mechanism at their effective concentrations. The detailed study on the antibacterial mechanism of the most potent complex M7 revealed that it exerted its antibacterial activity by inhibiting the function of FtsZ and perturbing the localization of the Z-ring at the mid cell.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Células HeLa , Paladio/farmacología , Antibacterianos/farmacología , Bacterias , Complejos de Coordinación/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Apoptosis
7.
Chem Biodivers ; 20(12): e202301170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37850505

RESUMEN

Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Ceftazidima , Espectroscopía Infrarroja por Transformada de Fourier , Triazoles , Antineoplásicos/farmacología , Antineoplásicos/química , ADN/química , Tomografía Computarizada por Rayos X , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Paladio/farmacología , Paladio/química , Albúmina Sérica Bovina/química
8.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687882

RESUMEN

This paper presents the development of cheap and selective Paper-based Analytical Devices (PADs) for selective Pd(II) determination from very acidic aqueous solutions. The PADs were obtained by impregnating two cm-side squares of filter paper with an azoic ligand, (2-(tetrazolylazo)-1,8 dihydroxy naphthalene-3,6,-disulphonic acid), termed TazoC. The so-obtained orange TazoC-PADs interact quickly with Pd(II) in aqueous solutions by forming a complex purple-blue-colored already at pH lower than 2. The dye complexes no other metal ions at such an acidic media, making TazoC-PADs highly selective to Pd(II) detection. Besides, at higher pH values, other cations, for example, Cu(II) and Ni(II), can interact with TazoC through the formation of stable and pink-magenta-colored complexes; however, it is possible to quantify Pd(II) in the presence of other cations using a multivariate approach. To this end, UV-vis spectra of the TazoC-PADs after equilibration with the metal ions solutions were registered in the 300-800 nm wavelength range. By applying Partial Least Square regression (PLS), the whole UV-vis spectra of the TazoC-PADs were related to the Pd(II) concentrations both when present alone in solution and also in the presence of Cu(II) and Ni(II). Tailored PLS models obtained with matrix-matched standard solutions correctly predicted Pd(II) concentrations in unknown samples and tap water spiked with the metal cation, making the method promising for quick and economical sensing of Pd(II).

9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768221

RESUMEN

Regarding the development of new antineoplastic agents, with a view to assess the selective antitumoral potential which aims at causing irreversible damage to cancer cells while preserving the integrity of their healthy counterparts, it is essential to evaluate the cytotoxic effects in both healthy and malignant human cell lines. In this study, a complex with two Pd(II) centers linked by the biogenic polyamine spermine (Pd2Spm) was tested on healthy (PNT-2) and cancer (LNCaP and PC-3) prostate human cell lines, using cisplatin as a reference. To understand the mechanisms of action of both cisplatin and Pd2Spm at a molecular level, Fourier Transform Infrared (FTIR) and Raman microspectroscopies were used. Principal component analysis was applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug impact. The main changes were observed between the B-DNA native conformation and either Z-DNA or A-DNA, with a higher effect on lipids having been detected in the presence of cisplatin as compared to Pd2Spm. In turn, the Pd-agent showed a more significant impact on proteins.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Cisplatino/farmacología , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Espermina/farmacología , Espermina/metabolismo , Lípidos , Espectroscopía Infrarroja por Transformada de Fourier
10.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175297

RESUMEN

This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 µg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 µg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.


Asunto(s)
Campylobacter jejuni , Complejos de Coordinación , Mycobacterium tuberculosis , Paladio/farmacología , Paladio/química , Cristalografía por Rayos X , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
11.
Angew Chem Int Ed Engl ; 62(49): e202314378, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37816684

RESUMEN

One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.

12.
J Biol Inorg Chem ; 27(2): 271-281, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35175415

RESUMEN

Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.


Asunto(s)
Acetilcolinesterasa , Isatina , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Isatina/farmacología , Ligandos , Estructura Molecular , Relación Estructura-Actividad
13.
Chemistry ; 28(41): e202200942, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35560962

RESUMEN

The limited use of palladium-103 and -109 radionuclides for molecular radiotherapy is surely due to the lack of appropriate ligands capable of fulfilling all criteria required for application in nuclear medicine. Furthermore, the thermodynamic properties of these complexes in solution remain difficult to establish. The challenge is compounded when considering that radiolabeling of compounds for translation to clinical trials requires fast complexation. Thus, the coordination of Pd(II) and 103/109 Pd-nuclides is a huge challenge in terms of molecular design and physicochemical characterization. Herein, we report a comprehensive study highlighting TE1PA, a monopicolinate cyclam - already established in nuclear imaging with 64 Cu-PET (positron emission tomography) imaging tracers - as a highly relevant chelator for natural Pd and subsequently 109 Pd-nuclide. The structural, thermodynamic, kinetic and radiolabeling studies of Pd(II) with TE1PA, as well as the comparison of this complex with three structurally related derivatives, support palladium-TE1PA radiopharmaceuticals as leading candidates for targeted nuclear medicine.


Asunto(s)
Paladio , Radiofármacos , Quelantes/química , Ligandos , Tomografía de Emisión de Positrones/métodos
14.
Biometals ; 35(2): 245-266, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35039973

RESUMEN

Treatment with transition metal complexes is an efficient method to fight with cancer. Therefore, a new transition metal complex formulated as [Pd(1, 3-pn)(acac)]Cl (pn and acac stand for propylendiamine and acetylacetonate, respectively) was synthesized and analyzed using 1H NMR, Fourier transform infrared, electronic absorption spectroscopy techniques as well as elemental analysis and conductivity measurement. The geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis and nonlinear optical (NLO) property were accomplished by density functional theory (DFT) at B3LYP level with 6-311G(d,p)/aug-cc-pVTZ-PP basis set. Preliminary determination of antitumor activity and lipophilicity of this metal complex was performed experimentally and the promising results were obtained. This encouraged us to study the interaction and binding mode/modes of this complex with DNA as the primary receptor for the chemotropic drugs and BSA as the transporter protein in the circulatory system. For this reason, the binding of newly made complex was assessed in-vitro under physiological state using experimental and in-silico molecular modeling studies. So, the CT-DNA binding study of this complex was explored using spectrofluorometric as well as spectrophotometric techniques, viscosity and gel electrophoresis experiments. Furthermore, fluorescence, UV-Vis, F[Formula: see text]rster resonance energy transfer and circular dichroism studies were carried out for BSA binding. The experimental and computational interaction studies showed that [Pd(1, 3-pn)(acac)]Cl complex binds to the minor groove of CT-DNA and interacts with BSA by van der Waals forces and hydrogen bond.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Complejos de Coordinación/química , ADN/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
15.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430252

RESUMEN

Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.


Asunto(s)
Metabolómica , Espermina , Animales , Ratones , Encéfalo , Hígado , Cisplatino/farmacología , Espectroscopía de Resonancia Magnética
16.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408496

RESUMEN

Three palladium(II) complexes with amino-amidato-phenolato-type tridentate ligands were synthesized and characterized by 1H NMR spectroscopy and X-ray crystallography. The strategic arrangement of a hydrogen-bond donor and acceptor adjacent to the substitution site of the PdII complex allowed the selective coordination of nucleosides. Among two pyrimidine-nucleosides, cytidine and 5-methyluridine, cytidine was successfully coordinated to the PdII complex while 5-methyluridne was not. On the other hand, both purine-nucleosides, adenosine and guanosine, were coordinated to the PdII complex. As purines have several coordination sites, adenosine afforded three kinds of coordination isomers expected from the three different donors. However, guanosine afforded a sole product according to the ligand design such that the formation of double intramolecular hydrogen-bond strongly induced the specific coordination by N1-position of guanine moiety. Furthermore, the preference of the nucleosides was evaluated by scrambling reactions. It was found that the preference of guanosine is nearly twice as high as adenosine and cytidine, owing to the three-point interaction of a coordination bond and two hydrogen bonds. These results show that the combination of a coordination and hydrogen bonds, which is reminiscent of the Watson-Crick base pairing, is an effective tool for the precise recognition of nucleosides.


Asunto(s)
Complejos de Coordinación , Paladio , Adenosina , Cristalografía por Rayos X , Citidina , Guanosina , Hidrógeno , Enlace de Hidrógeno , Ligandos , Nucleósidos , Paladio/química
17.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408514

RESUMEN

Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 µM). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Cumarinas , Humanos , Paladio/farmacología , Neoplasias Pancreáticas/patología , Factores de Transcripción SOXF , Pez Cebra , Neoplasias Pancreáticas
18.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080329

RESUMEN

Reactions of isocyanates/isothiocyanates with primary and secondary phosphines without solvent at room temperature afforded phosphinecarboxamide/phosphinecarbothioamide, respectively, in excellent yields. Furthermore, palladium complex Pd(COD)Cl2 was allowed to react with Ph2PC(O)NHPh (1a) to afford [Pd{Ph2PC(O)NHPh-κP}2Cl2] (3). On the other hand, the reaction of Pd(COD)Cl2 with 1 eq. of Ph2PC(S)NHPh (2a) afforded [PdCl2{Ph2PC(S)NHPh-κP,S}] (4). In the case of a 1:2 molar ratio, [PdCl{Ph2PC(S)NHPh-κP,S}{Ph2PC(S)NHPh-κP}]Cl (5) was formed. The newly obtained compounds were fully characterized using multielement NMR measurements and elemental analyses. In addition, the molecular structures of Ph2PC(O)NH(CH2)2Cl (1j), Ph2PC(S)NHPh(4-Cl) (2c), and 3-5 were determined using single-crystal X-ray diffraction.


Asunto(s)
Compuestos Organometálicos , Fosfinas , Cristalografía por Rayos X , Estructura Molecular , Compuestos Organometálicos/química , Paladio/química , Fosfinas/química
19.
Molecules ; 27(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35056704

RESUMEN

The paper presents basic studies on the precipitation of platinum, palladium, rhodium, and ruthenium nanoparticles from model acidic solutions using sodium borohydride, ascorbic acid, and sodium formate as reducing agents and polyvinylpyrrolidone as a stabilizing agent. The size of the obtained PGM particles after precipitation with NaBH4 solution does not exceed 55 nm. NaBH4 is an efficient reducer; the precipitation yields for Pt, Pd, Ru, Rh are 75, 90, 65 and 85%, respectively. By precipitation with ascorbic acid, it is possible to efficiently separate Pt, Rh, and Ru from Pd from the two-component mixtures. The obtained Pt, Pd, and Rh precipitates have the catalytic ability of the catalytic reaction of p-nitrophenol to p-aminophenol. The morphological characteristic of the PGM precipitates was analyzed by AFM, SEM-EDS, and TEM.

20.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408606

RESUMEN

To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with ß-diketone [tfa-1,1,1-trifluoro-2,4-pentanedionato (1); pfpa-5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba-5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and ß-iminoketone [i-tfa-1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa-5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70-80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd ß-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd ß-iminoketonates. The molecules 2-6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1-2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4-6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd ß-iminoketonates and Pd ß-diketonates were minimized with the elongation of the fluorine chain in the ligands.


Asunto(s)
Flúor , Paladio , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Paladio/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda