Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 19(51): e2300617, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37104829

RESUMEN

Multiplexed computational sensing with a point-of-care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury is demonstrated. This point-of-care sensor includes a paper-based fluorescence vertical flow assay (fxVFA) processed by a low-cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 µL of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase-MB, and heart-type fatty acid binding protein, achieving less than 0.52 ng mL-1 limit-of-detection for all three biomarkers with minimal cross-reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network-based inference is blindly tested using 46 individually activated cartridges, which shows a high correlation with the ground truth concentrations for all three biomarkers achieving >0.9 linearity and <15% coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper-based design and handheld footprint makes it a promising point-of-care sensor platform that can expand access to diagnostics in resource-limited settings.


Asunto(s)
Aprendizaje Profundo , Sistemas de Atención de Punto , Humanos , Fluorescencia , Biomarcadores
2.
Small ; 15(1): e1803913, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468558

RESUMEN

Paper-based assays for detection of physiologically important species are needed in medical theranostics owning to their superiorities in point of care testing, daily monitoring, and even visual readout by using chromogenic materials. In this work, a facile test strip is developed for visual detection of a neurotransmitter dopamine (DA) based on dual-emission fluorescent molecularly imprinted polymer nanoparticles (DE-MIPs). The DE-MIPs, featured with tailor-made DA affinity and good anti-interference, exhibit DA concentration-dependent fluorescent colors, due to the variable ratios of dual-emission fluorescence caused by DA binding and quenching. By facile coating DE-MIPs on a filter paper, the DA test strips are obtained. The resultant test strip, like the simplicity of a pH test paper, shows the potential for directly visual detection of DA levels just by dripping a tiny amount of biofluid sample on it. The test result of real serum samples demonstrates that the DA strip enables to visually and semiquantitatively detect DA within 3 min by using only 10 µL of serum samples and with a low detection limit ((100-150) × 10-9 m) by naked eye. This work thus offers a facile and efficient strategy for rapid, visual, and on-site detection of biofluids in clinic.


Asunto(s)
Líquidos Corporales/química , Dopamina/análisis , Impresión Molecular , Dopamina/sangre , Humanos , Puntos Cuánticos/ultraestructura , Espectrometría de Fluorescencia
3.
Anal Bioanal Chem ; 408(5): 1335-46, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26427504

RESUMEN

To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatografía de Afinidad/métodos , Colodión/metabolismo , Proteínas Inmovilizadas/metabolismo , Papel , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo , Anticuerpos/química , Anticuerpos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Colodión/química , Proteínas Inmovilizadas/química , Proteínas Recombinantes/química , Estreptavidina/química
4.
ACS Nano ; 18(26): 16819-16831, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888985

RESUMEN

The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 µL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , Inmunoglobulina M , Aprendizaje Automático , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Papel , Prueba Serológica para COVID-19/métodos , Pruebas Serológicas/métodos
5.
Anal Sci ; 35(2): 123-131, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224569

RESUMEN

In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.


Asunto(s)
Diagnóstico , Inmunoensayo/métodos , Nanopartículas , Sistemas de Atención de Punto , Humanos
6.
Talanta ; 205: 120152, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450458

RESUMEN

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small probes upon nonspecific adsorption onto cellulose substrates. Here we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulose surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real case immunoassay, namely the diagnostic discrimination of Zika + individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.


Asunto(s)
Bioensayo/métodos , Celulosa/química , Péptidos/química , Análisis por Matrices de Proteínas/métodos , Adsorción , Secuencia de Aminoácidos , Química Clic , Proteínas Inmovilizadas/química , Humectabilidad
7.
Trends Biotechnol ; 35(12): 1169-1180, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28965747

RESUMEN

Lateral flow assays (LFAs) are highly attractive for point-of-care (POC) diagnostics for infectious disease, food safety, and many other medical uses. The unique optical, electronic, and chemical properties that arise from the nanostructured and material characteristics of nanoparticles provide an opportunity to increase LFA sensitivity and impart novel capabilities. However, interfacing to nanomaterials in complex biological environments is challenging and can result in undesirable side effects such as non-specific adsorption, protein denaturation, and steric hindrance. These issues are even more acute in LFAs where there are many different types of inorganic-biological interfaces, often of a complex nature. Therefore, the unique properties of nanomaterials for LFAs must be exploited in a way that addresses these interface challenges.


Asunto(s)
Técnicas Biosensibles/instrumentación , Inmunoensayo/instrumentación , Nanotecnología/instrumentación , Anticuerpos/química , Antígenos/química , Técnicas Biosensibles/métodos , Diseño de Equipo , Humanos , Inmunoensayo/métodos , Nanopartículas/química , Puntos Cuánticos/química
8.
Anal Chim Acta ; 885: 156-65, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26231901

RESUMEN

Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Hibridación de Ácido Nucleico/métodos , Oligonucleótidos/análisis , Papel , Puntos Cuánticos/química , Biomarcadores/análisis , Carbocianinas/química , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Humanos , Oligonucleótidos/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda