Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065081

RESUMEN

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Humanos , Apoptosis , Organoides , Transducción de Señal , Análisis de la Célula Individual , Evaluación Preclínica de Medicamentos , Algoritmos , Células Madre
2.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644529

RESUMEN

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Asunto(s)
Neoplasias Pancreáticas/patología , Microambiente Tumoral , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Diferenciación Celular , Proliferación Celular , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Fenotipo , Células del Estroma/patología , Análisis de Supervivencia , Microambiente Tumoral/inmunología
3.
Cell ; 173(2): 515-528.e17, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625057

RESUMEN

Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied, and few laboratory models exist that reflect the biology of the human disease. Here, we describe a biobank of patient-derived organoid lines that recapitulates the histopathological and molecular diversity of human bladder cancer. Organoid lines can be established efficiently from patient biopsies acquired before and after disease recurrence and are interconvertible with orthotopic xenografts. Notably, organoid lines often retain parental tumor heterogeneity and exhibit a spectrum of genomic changes that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Our studies indicate that patient-derived bladder tumor organoids represent a faithful model system for studying tumor evolution and treatment response in the context of precision cancer medicine.


Asunto(s)
Neoplasias de la Vejiga Urinaria/patología , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Mutación , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Medicina de Precisión , Trasplante Heterólogo , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo
4.
Mol Cell ; 75(4): 669-682.e5, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31302002

RESUMEN

Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.


Asunto(s)
Daño del ADN , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Quinasa I-kappa B/metabolismo , Irinotecán/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias , Neoplasias , Animales , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Células HCT116 , Humanos , Quinasa I-kappa B/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Telómero/genética , Telómero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur J Immunol ; 54(6): e2350891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509863

RESUMEN

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.


Asunto(s)
Neoplasias Colorrectales , Células Dendríticas , Dinoprostona , Interleucina-6 , Organoides , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Organoides/inmunología , Organoides/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Interleucina-6/inmunología , Técnicas de Cocultivo , Fenotipo , Plasticidad de la Célula
6.
Stem Cells ; 42(6): 499-508, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38525972

RESUMEN

Inter-individual variation largely influences disease susceptibility, as well as response to therapy. In a clinical context, the optimal treatment of a disease should consider inter-individual variation and formulate tailored decisions at an individual level. In recent years, emerging organoid technologies promise to capture part of an individual's phenotypic variability and prove helpful in providing clinically relevant molecular insights. Organoids are stem cell-derived 3-dimensional models that contain multiple cell types that can self-organize and give rise to complex structures mimicking the organization and functionality of the tissue of origin. Organoids therefore represent a more faithful recapitulation of the dynamics of the tissues of interest, compared to conventional monolayer cultures, thus supporting their use in evaluating disease prognosis, or as a tool to predict treatment outcomes. Additionally, the individualized nature of patient-derived organoids enables the use of autologous organoids as a source of transplantable material not limited by histocompatibility. An increasing amount of preclinical evidence has paved the way for clinical trials exploring the applications of organoid-based technologies, some of which are in phase I/II. This review focuses on the recent progress concerning the use of patient-derived organoids in personalized medicine, including (1) diagnostics and disease prognosis, (2) treatment outcome prediction to guide therapeutic advice, and (3) organoid transplantation or cell-based therapies. We discuss examples of these potential applications and the challenges associated with their future implementation.


Asunto(s)
Neoplasias , Organoides , Medicina de Precisión , Trasplante Autólogo , Humanos , Medicina de Precisión/métodos , Organoides/metabolismo , Trasplante Autólogo/métodos , Neoplasias/terapia , Neoplasias/patología , Animales
7.
FASEB J ; 38(15): e23847, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096137

RESUMEN

Intestinal failure-associated liver disease (IFALD) is a serious complication of long-term parenteral nutrition in patients with short bowel syndrome (SBS), and is the main cause of death in SBS patients. Prevention of IFALD is one of the major challenges in the treatment of SBS. Impairment of intestinal barrier function is a key factor in triggering IFALD, therefore promoting intestinal repair is particularly important. Intestinal repair mainly relies on the function of intestinal stem cells (ISC), which require robust mitochondrial fatty acid oxidation (FAO) for self-renewal. Herein, we report that aberrant LGR5+ ISC function in IFALD may be attributed to impaired farnesoid X receptor (FXR) signaling, a transcriptional factor activated by steroids and bile acids. In both surgical biopsies and patient-derived organoids (PDOs), SBS patients with IFALD represented lower population of LGR5+ cells and decreased FXR expression. Moreover, treatment with T-ßMCA in PDOs (an antagonist for FXR) dose-dependently reduced the population of LGR5+ cells and the proliferation rate of enterocytes, concomitant with decreased key genes involved in FAO including CPT1a. Interestingly, however, treatment with Tropifexor in PDOs (an agonist for FXR) only enhanced FAO capacity, without improvement in ISC function and enterocyte proliferation. In conclusion, these findings suggested that impaired FXR may accelerate the depletion of LGR5 + ISC population through disrupted FAO processes, which may serve as a new potential target of preventive interventions against IFALD for SBS patients.


Asunto(s)
Hepatopatías , Receptores Citoplasmáticos y Nucleares , Síndrome del Intestino Corto , Transducción de Señal , Células Madre , Humanos , Síndrome del Intestino Corto/metabolismo , Síndrome del Intestino Corto/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Madre/metabolismo , Masculino , Hepatopatías/metabolismo , Hepatopatías/patología , Hepatopatías/etiología , Femenino , Niño , Insuficiencia Intestinal/metabolismo , Preescolar , Lactante , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Receptores Acoplados a Proteínas G/metabolismo , Proliferación Celular , Intestinos/patología , Enterocitos/metabolismo
8.
J Cell Mol Med ; 28(7): e18198, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506093

RESUMEN

Mounting evidence has highlighted the multifunctional characteristics of glutamine metabolism (GM) in cancer initiation, progression and therapeutic regimens. However, the overall role of GM in the tumour microenvironment (TME), clinical stratification and therapeutic efficacy in patients with ovarian cancer (OC) has not been fully elucidated. Here, three distinct GM clusters were identified and exhibited different prognostic values, biological functions and immune infiltration in TME. Subsequently, glutamine metabolism prognostic index (GMPI) was constructed as a new scoring model to quantify the GM subtypes and was verified as an independent predictor of OC. Patients with low-GMPI exhibited favourable survival outcomes, lower enrichment of several oncogenic pathways, less immunosuppressive cell infiltration and better immunotherapy responses. Single-cell sequencing analysis revealed a unique evolutionary trajectory of OC cells from high-GMPI to low-GMPI, and OC cells with different GMPI might communicate with distinct cell populations through ligand-receptor interactions. Critically, the therapeutic efficacy of several drug candidates was validated based on patient-derived organoids (PDOs). The proposed GMPI could serve as a reliable signature for predicting patient prognosis and contribute to optimising therapeutic strategies for OC.


Asunto(s)
Glutamina , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Microambiente Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Cognición
9.
J Biol Chem ; 299(8): 105021, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423299

RESUMEN

Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Recurrencia Local de Neoplasia/patología , Fibroblastos/metabolismo , Organoides/metabolismo , Microambiente Tumoral
10.
Mol Cancer ; 23(1): 10, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200602

RESUMEN

BACKGROUND AND AIMS: This study sought to determine the value of patient-derived organoids (PDOs) from esophago-gastric adenocarcinoma (EGC) for response prediction to neoadjuvant chemotherapy (neoCTx). METHODS: Endoscopic biopsies of patients with locally advanced EGC (n = 120) were taken into culture and PDOs expanded. PDOs' response towards the single substances of the FLOT regimen and the combination treatment were correlated to patients' pathological response using tumor regression grading. A classifier based on FLOT response of PDOs was established in an exploratory cohort (n = 13) and subsequently confirmed in an independent validation cohort (n = 13). RESULTS: EGC PDOs reflected patients' diverse responses to single chemotherapeutics and the combination regimen FLOT. In the exploratory cohort, PDOs response to single 5-FU and FLOT combination treatment correlated with the patients' pathological response (5-FU: Kendall's τ = 0.411, P = 0.001; FLOT: Kendall's τ = 0.694, P = 2.541e-08). For FLOT testing, a high diagnostic precision in receiver operating characteristic (ROC) analysis was reached with an AUCROC of 0.994 (CI 0.980 to 1.000). The discriminative ability of PDO-based FLOT testing allowed the definition of a threshold, which classified in an independent validation cohort FLOT responders from non-responders with high sensitivity (90%), specificity (100%) and accuracy (92%). CONCLUSION: In vitro drug testing of EGC PDOs has a high predictive accuracy in classifying patients' histological response to neoadjuvant FLOT treatment. Taking into account the high rate of successful PDO expansion from biopsies, the definition of a threshold that allows treatment stratification paves the way for an interventional trial exploring PDO-guided treatment of EGC patients.


Asunto(s)
Adenocarcinoma , Carbamatos , Pirazinas , Piridinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Terapia Combinada , Terapia Neoadyuvante , Adenocarcinoma/tratamiento farmacológico , Organoides , Fluorouracilo/farmacología
11.
Mol Cancer ; 23(1): 12, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200517

RESUMEN

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is an extremely rare and highly invasive tumor. Due to the lack of accurate models that reflect the biological characteristics of primary tumors, studying MPM remains challenging and is associated with an exceedingly unfavorable prognosis. This study was aimed to establish a new potential preclinical model for MPM using patient-derived MPM organoids (MPMOs) and to comprehensively evaluate the practicality of this model in medical research and its feasibility in guiding individualized patient treatment. METHODS: MPMOs were constructed using tumor tissue from MPM patients. Histopathological analysis and whole genome sequencing (WGS) were employed to determine the ability of MPMOs to replicate the original tumor's genetic and histological characteristics. The subcutaneous and orthotopic xenograft models were employed to assess the feasibility of establishing an in vivo model of MPM. MPMOs were also used to conduct drug screening and compare the results with retrospective analysis of patients after treatment, in order to evaluate the potential of MPMOs in predicting the effectiveness of drugs in MPM patients. RESULTS: We successfully established a culture method for human MPM organoids using tumor tissue from MPM patients and provided a comprehensive description of the necessary medium components for MPMOs. Pathological examination and WGS revealed that MPMOs accurately represented the histological characteristics and genomic heterogeneity of the original tumors. In terms of application, the success rate of creating subcutaneous and orthotopic xenograft models using MPMOs was 88% and 100% respectively. Drug sensitivity assays demonstrated that MPMOs have different medication responses, and these differences were compatible with the real situation of the patients. CONCLUSION: This study presents a method for generating human MPM organoids, which can serve as a valuable research tool and contribute to the advancement of MPM research. Additionally, these organoids can be utilized as a means to evaluate the effectiveness of drug treatments for MPM patients, offering a model for personalized treatment approaches.


Asunto(s)
Mesotelioma Maligno , Mesilatos , Neoplasias Peritoneales , Piperidinas , Humanos , Animales , Estudios Retrospectivos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/genética , Modelos Animales de Enfermedad , Organoides
12.
Mol Cancer ; 23(1): 50, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461268

RESUMEN

Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.


Asunto(s)
Multiómica , Neoplasias , Humanos , Medicina de Precisión/métodos , Genómica/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/diagnóstico , Metabolómica/métodos , Descubrimiento de Drogas
13.
Int J Cancer ; 155(4): 697-709, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577882

RESUMEN

Patient-derived organoids (PDOs) may facilitate treatment selection. This retrospective cohort study evaluated the feasibility and clinical benefit of using PDOs to guide personalized treatment in metastatic breast cancer (MBC). Patients diagnosed with MBC were recruited between January 2019 and August 2022. PDOs were established and the efficacy of customized drug panels was determined by measuring cell mortality after drug exposure. Patients receiving organoid-guided treatment (OGT) were matched 1:2 by nearest neighbor propensity scores with patients receiving treatment of physician's choice (TPC). The primary outcome was progression-free survival. Secondary outcomes included objective response rate and disease control rate. Targeted gene sequencing and pathway enrichment analysis were performed. Forty-six PDOs (46 of 51, 90.2%) were generated from 45 MBC patients. PDO drug screening showed an accuracy of 78.4% (95% CI 64.9%-91.9%) in predicting clinical responses. Thirty-six OGT patients were matched to 69 TPC patients. OGT was associated with prolonged median progression-free survival (11.0 months vs. 5.0 months; hazard ratio 0.53 [95% CI 0.33-0.85]; p = .01) and improved disease control (88.9% vs. 63.8%; odd ratio 4.26 [1.44-18.62]) compared with TPC. The objective response rate of both groups was similar. Pathway enrichment analysis in hormone receptor-positive, human epidermal growth factor receptor 2-negative patients demonstrated differentially modulated pathways implicated in DNA repair and transcriptional regulation in those with reduced response to capecitabine/gemcitabine, and pathways associated with cell cycle regulation in those with reduced response to palbociclib. Our study shows that PDO-based functional precision medicine is a feasible and effective strategy for MBC treatment optimization and customization.


Asunto(s)
Neoplasias de la Mama , Organoides , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Organoides/patología , Organoides/efectos de los fármacos , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Adulto , Medicina de Precisión/métodos , Supervivencia sin Progresión , Metástasis de la Neoplasia , Piridinas/uso terapéutico , Piridinas/administración & dosificación , Piperazinas/uso terapéutico , Piperazinas/administración & dosificación , Resultado del Tratamiento
14.
Int J Cancer ; 155(2): 324-338, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533706

RESUMEN

Breast cancer has become the most commonly diagnosed cancer. The intra- and interpatient heterogeneity induced a considerable variation in treatment efficacy. There is an urgent requirement for preclinical models to anticipate the effectiveness of individualized drug responses. Patient-derived organoids (PDOs) can accurately recapitulate the architecture and biological characteristics of the origin tumor, making them a promising model that can overtake many limitations of cell lines and PDXs. However, it is still unclear whether PDOs-based drug testing can benefit breast cancer patients, particularly those with tumor recurrence or treatment resistance. Fresh tumor samples were surgically resected for organoid culture. Primary tumor samples and PDOs were subsequently subjected to H&E staining, immunohistochemical (IHC) analysis, and whole-exome sequencing (WES) to make comparisons. Drug sensitivity tests were performed to evaluate the feasibility of this model for predicting patient drug response in clinical practice. We established 75 patient-derived breast cancer organoid models. The results of H&E staining, IHC, and WES revealed that PDOs inherited the histologic and genetic characteristics of their parental tumor tissues. The PDOs successfully predicted the patient's drug response, and most cases exhibited consistency between PDOs' drug susceptibility test results and the clinical response of the matched patient. We conclude that the breast cancer organoids platform can be a potential preclinical tool used for the selection of effective drugs and guided personalized therapies for patients with advanced breast cancer.


Asunto(s)
Neoplasias de la Mama , Secuenciación del Exoma , Organoides , Medicina de Precisión , Humanos , Organoides/patología , Organoides/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Medicina de Precisión/métodos , Persona de Mediana Edad , Adulto , Anciano , Ensayos de Selección de Medicamentos Antitumorales/métodos
15.
Gastroenterology ; 165(2): 429-444.e15, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36906044

RESUMEN

BACKGROUND & AIMS: Patients with colon cancer with liver metastases may be cured with surgery, but the presence of additional lung metastases often precludes curative treatment. Little is known about the processes driving lung metastasis. This study aimed to elucidate the mechanisms governing lung vs liver metastasis formation. METHODS: Patient-derived organoid (PDO) cultures were established from colon tumors with distinct patterns of metastasis. Mouse models recapitulating metastatic organotropism were created by implanting PDOs into the cecum wall. Optical barcoding was applied to trace the origin and clonal composition of liver and lung metastases. RNA sequencing and immunohistochemistry were used to identify candidate determinants of metastatic organotropism. Genetic, pharmacologic, in vitro, and in vivo modeling strategies identified essential steps in lung metastasis formation. Validation was performed by analyzing patient-derived tissues. RESULTS: Cecum transplantation of 3 distinct PDOs yielded models with distinct metastatic organotropism: liver only, lung only, and liver and lung. Liver metastases were seeded by single cells derived from select clones. Lung metastases were seeded by polyclonal clusters of tumor cells entering the lymphatic vasculature with very limited clonal selection. Lung-specific metastasis was associated with high expression of desmosome markers, including plakoglobin. Plakoglobin deletion abrogated tumor cell cluster formation, lymphatic invasion, and lung metastasis formation. Pharmacologic inhibition of lymphangiogenesis attenuated lung metastasis formation. Primary human colon, rectum, esophagus, and stomach tumors with lung metastases had a higher N-stage and more plakoglobin-expressing intra-lymphatic tumor cell clusters than those without lung metastases. CONCLUSIONS: Lung and liver metastasis formation are fundamentally distinct processes with different evolutionary bottlenecks, seeding entities, and anatomic routing. Polyclonal lung metastases originate from plakoglobin-dependent tumor cell clusters entering the lymphatic vasculature at the primary tumor site.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Neoplasias Pulmonares , Ratones , Animales , Humanos , gamma Catenina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias del Colon/genética , Neoplasias Hepáticas/patología
16.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954022

RESUMEN

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Asunto(s)
Técnicas de Cocultivo , Linfocitos Infiltrantes de Tumor , Organoides , Receptores de Antígenos de Linfocitos T , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Organoides/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología
17.
Cancer Cell Int ; 24(1): 220, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926706

RESUMEN

BACKGROUND: A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment. METHODS: PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening. RESULTS: Both PDO cultures recapitulated the histological and molecular profiles of the original tissues, and they showed typical mammary gland organization, confirming their reliability as a personalized in vitro model. Compared with O-PRE, O-POST had a greater proliferation rate with a significant increase in the Ki67 proliferation index. Moreover O-POST exhibited a more stem-like and aggressive phenotype, with increases in the CD24low/CD44low and EPCAMlow/CD49fhigh cell populations characterized by increased tumour initiation potential and multipotency and metastatic potential in invasive lobular carcinoma. Analysis of ErbB receptor expression indicated a decrease in HER-2 expression coupled with an increase in EGFR expression in O-POST. In this context, deregulation of the PI3K/Akt signalling pathway was assessed by transcriptomic analysis, confirming the altered transcriptional profile. Finally, transcriptomic single-cell analysis identified 11 cell type clusters, highlighting the selection of the luminal component and the decrease in the number of Epithelial-mesenchymal transition cell types in O-POST. CONCLUSION: Neoadjuvant treatment contributed to the enrichment of cell populations with luminal phenotypes that were more resistant to chemotherapy in O-POST. PDOs represent an excellent 3D cell model for assessing disease evolution.

18.
Cancer Cell Int ; 24(1): 42, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273320

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are involved in the regulation of progression and drug resistance in ovarian cancer (OC). In the present study, we aimed to explore the role of circRAD23B, a newly identified circRNA, in the regulation of carboplatin-resistant OC. METHODS: CircRAD23B expression levels were measured using qRT-PCR. The biological roles of circRAD23B were analysed using CCK-8, colony formation, EDU, flow cytometry, and cell viability assays. RNA pull-down and luciferase assays were used to investigate the interactions of circRAD23B with mRNAs and miRNAs. RESULTS: CircRAD23B was significantly increased in carboplatin-resistant OC tissues. CircRAD23B promoted proliferation and reduced sensitivity to carboplatin in cell lines and patient-derived organoids (PDOs), consistent with in vivo findings. Mechanistically, circRAD23B acted as a molecular sponge, abrogating its inhibitory effect on Y-box binding protein 1 (YBX1) by adsorbing miR-1287-5p. Rescue experiments confirmed that the pro-proliferation and carboplatin resistance mediated by circRAD23B was partially reversed by the upregulation of miR-1287-5p. CONCLUSIONS: Our results demonstrated, for the first time, the role of the circRAD23B/miR-1287-5p/YBX1 axis in OC progression and carboplatin resistance in cell lines, PDOs, and animal models, providing a basis for the development of targeted therapies for patients with OC.

19.
FASEB J ; 37(1): e22713, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520086

RESUMEN

Parenteral nutrition (PN)-induced villus atrophy is a major cause of intestinal failure (IF) for children suffering from short bowel syndrome (SBS), but the precise mechanism remains unclear. Herein, we report a pivotal role of farnesoid X receptor (FXR) signaling and fatty acid oxidation (FAO) in PN-induced villus atrophy. A total of 14 pediatric SBS patients receiving PN were enrolled in this study. Those patients with IF showed longer PN duration and significant intestinal villus atrophy, characterized by remarkably increased enterocyte apoptosis concomitant with impaired FXR signaling and decreased FAO genes including carnitine palmitoyltransferase 1a (CPT1a). Likewise, similar changes were found in an in vivo model of neonatal Bama piglets receiving 14-day PN, including villus atrophy and particularly disturbed FAO process responding to impaired FXR signaling. Finally, in order to consolidate the role of the FXR-CPT1a axis in modulating enterocyte apoptosis, patient-derived organoids (PDOs) were used as a mini-gut model in vitro. Consequently, pharmacological inhibition of FXR by tauro-ß-muricholic acid (T-ßMCA) evidently suppressed CPT1a expression leading to reduced mitochondrial FAO function and inducible apoptosis. In conclusion, impaired FXR/CPT1a axis and disturbed FAO may play a pivotal role in PN-induced villus atrophy, contributing to intestinal failure in SBS patients.


Asunto(s)
Enfermedades Gastrointestinales , Insuficiencia Intestinal , Síndrome del Intestino Corto , Animales , Porcinos , Síndrome del Intestino Corto/complicaciones , Carnitina O-Palmitoiltransferasa/metabolismo , Nutrición Parenteral/efectos adversos , Atrofia
20.
Exp Cell Res ; 428(1): 113618, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142202

RESUMEN

Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Virus de la Hepatitis B , Neoplasias Hepáticas/patología , Organoides/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda