RESUMEN
Achieving superior photomineralization of pollutants relies on a rational design of a dual S-scheme with a robust internal electric field (IEF). In this study, to tackle the low mineralization rate in type-II In2 O3 /In2 S3 (IO/IS) systems, an organic-inorganic dual S-scheme In2 O3 /PDI/In2 S3 (IO/PDI/IS) nanostructured photocatalyst is synthesized via a method combining solvent-induced self-assembly and electrostatic forces. Due to the unique energy band position and strong IEF, the photoinduced defect-transit dual S-scheme IO/PDI/IS facilitates the degradation of lignin and antibiotics. Notably, a promising mineralization rate of 80.9% for sodium lignosulfonate (SL) is achieved. The charge transport pathway of IO/PDI/IS are further validated through the analysis of in situ X-ray photoelectron spectroscopy (in situ XPS), density functional theory calculations, and radical trapping experiments. In-depth, two possible pathways for the photocatalytic degradation of lignin are proposed based on the intermediates monitored by liquid chromatography-mass spectrometry (LC-MS). This study presents a new strategy for the design of organic-inorganic dual S-scheme photocatalysts with a robust IEF for pollutant degradation.
RESUMEN
Thrombus causes a serious condition characterized by the formation of blood clots in blood vessels or heart, potentially leading to life-threatening emergencies. Photothermal therapy (PTT) serves as a treatment for thrombosis that provides noninvasive thrombus dissolution and fewer bleeding side effects. However, the high temperatures generated by PTT can exacerbate vascular inflammation and promote thrombus recurrence. In this study, a photothermal hydrogen sulfide (H2S) nanogenerator (PSA@ADT-OH) is constructed using a perylene-cored photothermal agent (PSA) coassembled with a H2S donor ADT-OH. The system PSA@ADT-OH demonstrates outstanding targeting and accumulation efficiency against blood flow shear forces. It also provides sustained H2S release at thrombus sites, contributing to antiplatelet aggregation, reactive oxygen species clearance, and vascular healing. This approach opens up new possibilities for advanced thrombus treatment.
RESUMEN
Covalently-linked chromophore-radical systems with their unique optical and magnetic properties are useful for applications in, e. g., quantum information science. To expand the catalog of molecular systems, we synthesized and characterized six novel chromophore-radical and radical-chromophore-radical systems employing derivatives of perylene diimide (PDI) as the chromophore and trityl as the radical. The EPR properties of these compounds were evaluated in solution at cryogenic and room temperatures. In addition, the electron spin-spin coupling in the two bistrityl systems was investigated using DQC measurements. The presented results serve as a basis for further spectroscopic investigations under photoexcitation of the PDI core.
RESUMEN
The backwardness of n-type organic semiconductors still exists compared with the p-type counterparts. Thus, the development of high-performance n-type organic semiconductors is of great importance for organic electronic devices and their integrated circuits. In recent years, azabenzannulated perylene diimide (PDI), as one of immense bay-region-annulated PDI derivatives, has drawn considerable attentions. However, the electronic mobilities of azabenzannulated PDI derivatives are barely satisfactory. In this contribution, the peripheral benzene ring in azabenzannulated PDI 2 was fused to the ortho position by intramolecular C-H arylation cyclization. This endows the resultant azabenzannulated PDI 4 a planar configuration as well as electron deficient pentagonal ring. As a result, the electronic mobility of 4 is almost two orders of magnitude higher than that of the nonfused azabenzannulated PDI 2. This work shall pave a new avenue in elevating the performance of azabenzannulated PDI in organic electronics.
RESUMEN
Luminescent solar concentrators (LSCs) are spectral conversion devices offering interesting opportunities for the integration of photovoltaics into the built environment and portable systems. The Förster-resonance energy transfer (FRET) process can boost the optical response of LSCs by reducing energy losses typically associated to non-radiative processes occurring within the device under operation. In this work, a new class of FRET-based thin-film LSC devices is presented, in which the synthetic versatility of linear polyurethanes (PU) is exploited to control the photophysical properties and the device performance of the resulting LSCs. A series of luminescent linear PUs are synthesized in the presence of two novel bis-hydroxyl-functionalized luminophores of suitable optical properties, used as chain extenders during the step-growth polyaddition reaction for the formation of the linear macromolecular network. By synthetically tuning their composition, the obtained luminescent PUs can achieve a high energy transfer efficiency (≈90%) between the covalently linked luminophores. The corresponding LSC devices exhibit excellent photonic response, with external and internal photon efficiencies as high as ≈4% and ≈37%, respectively. Furthermore, their optimized power conversion efficiency combined with their enhanced average visible-light transmittance highlight their suitability for potential use as transparent solar energy devices.
Asunto(s)
Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia , Poliuretanos , Energía Solar , Poliuretanos/química , Luminiscencia , Estructura MolecularRESUMEN
Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala)4 Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala)4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor-acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a "scorpion-shaped" molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH O=C-NH O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor-acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.
Asunto(s)
Aminoácidos/química , Transporte de Electrón , Enlace de Hidrógeno , Oligopéptidos/química , Dicroismo Circular , Electrones , Imidas/química , Cinética , Espectroscopía de Resonancia Magnética , Perileno/análogos & derivados , Perileno/química , Porfirinas/química , Pliegue de Proteína , TermodinámicaRESUMEN
The self-assembly material N,N-bis-(3-dimethyl aminopropyl)-3,4,9,10-perylene tetracarboxylic acid diimide (PDI) is reported to show electrochemical (EC)/electrochemiluminescence (ECL) property for designing new dual-mode dopamine (DA) sensors. K2S2O8 significantly improved the EC reduction current at -0.346 V and ECL intensity at -0.25 V of the PDI self-assembly material. DA largely decreased the EC reduction current and ECL intensity of this homogeneous EC/ECL material due to the competitive consumption of K2S2O8 in the oxidization process of DA and the low electron conductivity of polyDA formed through the oxidization of DA by K2S2O8. In addition, the ECL quenching mechanism involved an energy-transfer process resulting from the collision between the produced o-benzoquinone species (oxidization of DA) and the excited state of PDI, which decreased the ECL intensity. This homogeneous EC/ECL material showed linear EC current response for DA from 5.0 nM to 50.0 µM with a detection of limit of 2.7 nM and linear ECL response for DA from 1.0 nM to 100.0 µM with a detection of limit of 0.41 nM. The proposed dual-mode EC/ECL sensors also showed good feasibility in urine sample analysis.
Asunto(s)
Dopamina , Técnicas Electroquímicas , Imidas , Límite de Detección , Mediciones Luminiscentes , Perileno , Perileno/química , Perileno/análogos & derivados , Dopamina/orina , Dopamina/análisis , Dopamina/química , Técnicas Electroquímicas/métodos , Imidas/química , Mediciones Luminiscentes/métodos , HumanosRESUMEN
The construction of high-performance n-type semiconductors is crucial for the advancement of organic electronics. As an attractive n-type semiconductor, molecular systems based on perylene diimide derivatives (PDIs) have been extensively investigated over recent years. Owing to the fascinating aggregated structure and high performance, S-heterocyclic annulated PDIs (SPDIs) are receiving increasing attention. However, the relationship between the structure and the electrical properties of SPDIs has not been deeply revealed, restricting the progress of PDI-based organic electronics. Here, we developed two novel SPDIs with linear and dendronized substituents in the imide position, named linear SPDI and dendronized SPDI, respectively. A series of structural and property characterizations indicated that linear SPDI formed a long-range-ordered crystalline structure based on helical supramolecular columns, while dendronized SPDI, with longer alkyl side chains, formed a 3D-ordered crystalline structure at a low temperature, which transformed into a hexagonal columnar liquid crystal structure at a high temperature. Moreover, no significant charge carrier transport signal was examined for linear SPDI, while dendronized SPDI had a charge carrier mobility of 3.5 × 10-3 cm2 V-1 s-1 and 2.1 × 10-3 cm2 V-1 s-1 in the crystalline and liquid crystalline state, respectively. These findings highlight the importance of the structure-function relationship in PDIs, and also offer useful roadmaps for the design of high-performance organic electronics for down-to-earth applications.
RESUMEN
The built-in electric field of the polymer semiconductors could be regulated by the dipole moment of its building blocks, thereby promoting the separation of photogenerated carriers and achieving efficient solar-driven water splitting. Herein, three perylene diimide (PDI) polymers, namely oPDI, mPDI and pPDI, are synthesized with different phenylenediamine linkers. Notably, the energy level structure, light-harvesting efficiency, and photogenerated carrier separation and migration of polymers are regulated by the orientation of PDI unit. Among them, oPDI enables a large dipole moment and robust built-in electric field, resulting in enhanced solar-driven water splitting performance. Under simulated sunlight irradiation, oPDI exhibits the highest photocurrent of 115.1â µA cm-2 for photoelectrochemical oxygen evolution, which is 11.5â times that of mPDI, 26.8â times that of pPDI and 104.6â times that of its counterparts PDI monomer at the same conditions. This work provides a strategy for designing polymers by regulating the orientation of structural units to construct efficient solar energy conversion systems.
RESUMEN
The co-assembly naphthalimide/perylene diimide (NDINH/PDINH) supramolecular photocatalysts were successfully synthesized via a rapid solution dispersion method. A giant internal electric field (IEF) in co-assembly structure was built by the larger local dipole. NDINH coated on PDINH could reduce the reflected electric field over PDINH to improve its responsive activity to ultraviolet light. Resultantly, an efficient full-spectrum photocatalytic overall water splitting activity with H2 and O2 evolution rate of 317.2 and 154.8â µmol g-1 h-1 for NDINH/PDINH together with optimized O2 evolution rate with 2.61â mmol g-1 h-1 using AgNO3 as a sacrificial reagent were achieved. Meanwhile, its solar-to-hydrogen efficiency was enhanced to 0.13 %. The enhanced photocatalytic activity was primarily attributed to the IEF between NDINH and PDINH, significantly accelerating transfer and separation of photogenerated carriers. Additionally, a direct Z-Scheme pathway of carriers contributed to a high redox potential. The strategy provided a new perspective for the design of supramolecular photocatalysts.
RESUMEN
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300â fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
RESUMEN
The cathode interlayer is crucial for the development of organic solar cells (OSCs), but the research on simple and efficient interlayer materials is lagging behind. Here, a donor-acceptor (D-A) typed selenophene-fused perylene diimide (PDI) derivative (SePDI3) is developed as cathode interlayer material (CIM) for OSCs, and a non-fused PDI derivative (PDI3) is used as the control CIM for comparison. Compared to PDI3, SePDI3 shows a stronger self-doping effect and better crystallinity, resulting in better charge transport ability. Furthermore, the interaction between SePDI3 and L8-BO can form an efficient extraction channel, leading to superior charge extraction behavior. Finally, benefitting from significantly enhanced charge transport and extraction capacity, the SePDI3-based device displays a champion PCE of 19.04 % with an ultrahigh fill factor of 81.65 % for binary OSCs based on PM6 : L8-BO active layer, which is one of the top efficiencies reported to date in binary OSCs based novel CIMs. Our work prescribes a facile and effective fusion strategy to develop high-efficiency CIMs for OSCs.
RESUMEN
High-performance organic cathode interlayers (CILs) play a crucial role in the advance of organic solar cells (OSCs). However, organic CILs have exhibited inferior performances to their inorganic counterparts over a long time, due to the inherent shortcoming of poor charge transporting capability. Here, we designed and synthesized a perylene-diimide (PDI) zwitterion PDI-B as high-performance organic CIL for OSCs. We revealed that an obvious H-aggregate of PDI-B was formed during the solution processing, thereby significantly enhancing the charge transporting capability of the CIL. Compared to the classic PDINN, the π-π stacking distance of PDI-B was reduced from 4.2â Å to 3.9â Å, which further facilitated the charge transport. Consequently, PDI-B showed a high conductivity of 1.81×10-3S/m; this is comparable to that of inorganic CILs. The binary OSC showed an elevated PCE of 19.23 %, which is among the highest PCE values for binary OSCs. Benefitting from improved solvent resistance and good compatibility with large-area processing method of PDI-B, the photovoltaic performances of inverted and 1-cm2 OSC were significantly improved. The results from this work provide a new approach of optimizing the condensed structure of PDI film to boost the charge conductivity, opening an avenue to develop high-performance PDI-based CILs.
RESUMEN
A simple method was developed to produce polymeric nanoribbons and other nanostructures in water. This approach incorporates a perylene diimide (PDI) functionalized by hydrophilic triethylene glycol (TEG) as a hydrophobic supramolecular structure directing unit (SSDU) into the core of hydrophilic poly(N,N-dimethylacrylamide) (PDMAc) chains using RAFT polymerization. All PDI-functional polymers dissolved spontaneously in water, forming different nanostructures depending on the degree of polymerization (DPn): nanoribbons and nanocylinders for DPn = 14 and 22, and spheres for DPn > 50 as determined by cryo-TEM and SAXS analyses. UV-VIS absorption spectroscopy was used to monitor the evolution of the PDI absorption signal upon dissolution. In solid form, all polymers show a H-aggregate absorption signature, but upon dissolution in water, the shortest DPn forming nanoribbons evolved to show HJ-aggregate absorption signals. Over time, the J-aggregate band increased in intensity, while cryo-TEM monitoring evidenced an increase in the nanoribbon's width. Heating the nanoribbons above 60 °C, triggered a morphological transition from nanoribbons to nanocylinders, due to the disappearance of J-aggregates, while H-aggregates were maintained. The study shows that the TEG-PDI is a powerful SSDU to promote 2D or 1D self-assembly of polymers depending on DPn through simple dissolution in water.
RESUMEN
As a class of predominantly used cathode interlayers (CILs) in organic solar cells (OSCs), perylene-diimide (PDI)-based polymers exhibit intriguing characteristics of excellent charge transporting capacity and suitable energy levels. Despite that, PDI-based CILs with satisfied film-forming ability and adequate solvent resistance are rather rare, which not only limits the further advance of OSC performances but also hinders the practical use of PDI CILs. Herein, we designed and synthesized two non-conjugated PDI polymers for achieving high power conversion efficiency (PCE) in diverse types of OSCs. The utilization of oligo (ethylene glycol) (OEG) linkage enhanced the n-doping effect of PDI polymers, leading to an improved ability of the CIL to reduce work function and improve electron transporting capability. Moreover, the introduction of the non-ionic OEG chain effectively improve the wetting property and solvent resistance of PDI polymers, so the PPDINN CIL can withstand diverse processing conditions in fabricating different OSCs, including conventional, inverted and blade-coated devices. The binary OSC with conventional structure using PPDINN CIL showed a PCE of 18.6 %, along with an improved device stability. Besides, PPDINN is compatible with the large-area blade-coating technique, and a PCE of 16.6 % was achieved in the 1-cm2 OSC where a blade-coated PPDINN was used.
RESUMEN
Perylene diimides (PDIs) have garnered considerable attention due to their immense potential in photocatalysis. However, manipulating the molecular packing within their aggregates and enhancing the efficiency of photogenerated carrier recombination remain significant challenges. In this study, we demonstrate the incorporation of a PDI unit into a covalent organic framework (COF), named PDI-PDA, by linking an ortho-substituted PDI with p-phenylenediamine (PDA) to control its intermolecular aggregation. The incorporation enables precise modulation of electron-transfer dynamics, leading to a ten-fold increase in the efficiency of photocatalytic oxidation of thioether to sulfoxide with PDI-PDA compared to the PDI molecular counterpart, with yields exceeding 90 %. Electron property studies and density functional theory calculations show that the PDI-PDA with its well-defined crystal structure, enhances π-π stacking and lowers the electron transition barrier. Moreover, the strong electron-withdrawing ability of the PDI unit promotes the spatial separation of the valency band maximum and conduction band minimum of PDI-PDA, suppressing the rapid recombination of photogenerated electron-hole pairs and improving the charge-separation efficiency to give high photocatalytic efficiency. This study provides a brief but effective way for improving the photocatalytic efficiency of commonly used PDI-based dyes by integrating them into a framework skeleton.
RESUMEN
Despite various efforts to optimize the near-infrared (NIR) performance of perylene diimide (PDI) derivatives for bio-imaging, convenient and efficient strategies to amplify the fluorescence of PDI derivatives in biological environment and the intrinsic mechanism studies are still lacking. Herein, we propose an alkyl-doping strategy to amplify the fluorescence of PDI derivative-based nanoparticles for improved NIR fluorescence imaging. The developed PDI derivative, OPE-PDI, shows much brighter in n-Hexane (HE) compared with that in other organic media, and the excited state dynamics investigation experimentally elucidates the solvent effect-induced suppression of intermolecular energy transfer and intramolecular nonradiative decay as the underlying mechanism for the fluorescence improvement. Theoretical calculations reveal the lowest reorganization energies of OPE-PDI in HE among various solvents, indicating the effectively suppressed conformational relaxation to support the strongest radiative decay. Inspired by this, an alkyl atmosphere mimicking HE is constructed by incorporating the octadecane into OPE-PDI-based nanoparticles, permitting up to 3-fold fluorescence improvement compared with the counterpart nanoparticles. Owing to the merits of high brightness, anti-photobleaching, and low biotoxicity for the optimal nanoparticles, they have been employed for probing and long-term monitoring of tumor. This work highlights a facile strategy for the fluorescence enhancement of PDI derivative-based nanoparticles.
RESUMEN
A rapidly growing interest in organic bioelectronic applications has spurred the development of a wide variety of organic mixed ionic-electronic conductors. While these new mixed conductors have enabled the community to interface organic electronics with biological systems and efficiently transduce biological signals (ions) into electronic signals, the current materials selection does not offer sufficient selectivity towards specific ions of biological relevance without the use of auxiliary components such as ion-selective membranes. Here, we present the molecular design of an n-type (electron-transporting) perylene diimide semiconductor material decorated with pendant oligoether groups to facilitate interactions with cations such as Na+ and K+. Using the cyclic 15-crown-5 oligoether motif, we find that the resulting mixed conductor PDI-crown displays a strong dependence on the size of the electrolyte cation when tested in an organic electrochemical transistor configuration. In stark contrast to the low current response on the order of 1â µA observed with aqueous sodium chloride, a nearly 200-fold increase in current is observed with aqueous potassium chloride. We ascribe the high selectivity to extended molecular aggregation and therefore efficient charge transport in the presence of K+ due to a favourable sandwich-like structure between two adjacent 15-crown-5 motifs and the potassium ion.
RESUMEN
Self-assembly process represents one of the most powerful and efficient methods for designing functional nanomaterials. For generating optimal functional materials, understanding the pathway complexity during self-assembly is essential, which involves the aggregation of molecules into thermodynamically or kinetically favored pathways. Herein, a functional perylene diimide (PDI) derivative by introducing diacetylene (DA) chains (PDI-DA) is designed. Temperature control pathway complexity with the evolution of distinct morphology for the kinetic and thermodynamic product of PDI-DA is investigated in detail. A facile strategy of UV-induced polymerization is adopted to trap and capture metastable kinetic intermediates to understand the self-assembly mechanism. PDI-DA showed two kinetic intermediates having the morphology of nanosheets and nanoparticles before transforming into the thermodynamic product having fibrous morphology. Spectroscopic studies revealed the existence of distinct H- and J-aggregates for kinetic and thermodynamic products respectively. The polymerized fibrous PDI-DA displayed reversible switching between J-aggregate and H-aggregate.
RESUMEN
The hygroscopic dopants used in Spiro-OMeTAD hole transport material (HTM) in state-of-the-art perovskite solar cells (PSCs) inevitably induce premature degradation of the devices. Here, two multifunctional polymer interface materials based on the perylene diimides (PDI) unit are developed. It is found that quasi-two-dimensional (2D) polymer 2DP-PDI can form a denser film and exhibit better hydrophobicity than linear polymer P-PDI. Importantly, 2DP-PDI can passivate the surface defects and extract hole carriers of perovskite film more effectively, leading to much reduced nonradiative recombination loss. With polymer interface material between the perovskite and HTM layers, the optimized device using 2DP-PDI and P-PDI yields a champion PCE of 24.20% and 23.09%, respectively, along with significantly improved stability, whereas the control device shows a lower efficiency of 22.23%. These results suggest that developing multifunctional polymer interface materials can be a promising strategy to improve the efficiency and stability of PSCs.