Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Genet Med ; : 101217, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39036894

RESUMEN

PURPOSE: Transient Bartter syndrome related to pathogenic variants of MAGED2 is the most recently described antenatal Bartter syndrome. Despite its transient nature, it is the most severe form of Bartter syndrome in the perinatal period. Our aim was to describe 14 new cases and to try to explain the incomplete penetrance in women. METHODS: We report on 14 new cases, including 3 females, and review the 40 cases described to date. We tested the hypothesis that MAGED2 is transcriptionally regulated by differential methylation of its CpG-rich promotor by pyrosequencing of DNA samples extracted from fetal and adult leukocytes and kidney samples. RESULTS: Analysis of the data from 54 symptomatic patients showed spontaneous resolution of symptoms in 27% of cases, persistent complications in 41% of cases and fatality in 32% of cases. Clinical anomalies were reported in 76% of patients, mostly renal anomalies (52%), cardiovascular anomalies (29%) and dysmorphic features (13%). A developmental delay was reported in 24% of patients. Variants were found in all regions of the gene. Methylation analysis of the MAGED2 CpG-rich promotor showed a correlation with gender, independent of age, tissue or presence of symptoms, excluding a role for this mechanism in the incomplete penetrance in women. CONCLUSION: This work enriches the phenotypic and genetic description of this recently described disease, and deepens our understanding of the pathophysiological role and regulation of MAGED2. Finally, by describing the wide range of outcomes in patients, this work opens the discussion on genetic counseling offered to families.

2.
Clin Genet ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923504

RESUMEN

To comprehensively investigate the neurodevelopmental profile and clinical characteristics associated with SETBP1 haploinsufficiency disorder (SETBP1-HD) and SETBP1-related disorders (SETBP1-RD). We reported genetic results on 34 individuals, with behavior and clinical data from 22 with SETBP1-HD and 5 with SETBP1-RD, by assessing results from medical history interviews and standardized adaptive, clinical, and social measures provided from Simons Searchlight. All individuals with SETBP1-HD and SETBP1-RD exhibited neurological impairments including intellectual disability/developmental delay (IDD), attention-deficit/hyperactivity disorder, autism spectrum disorder, and/or seizures, as well as speech and language delays. While restricted interests and repetitive behaviors present challenges, a relative strength was observed in social motivation within both cohorts. Individuals with SETBP1-RD reported a risk for heart issues and compared to SETBP1-HD greater risks for orthopedic and somatic issues with greater difficulty in bowel control. Higher rates for neonatal feeding difficulties and febrile seizures were reported for individuals with SETBP1-HD. Additional prominent characteristics included sleep, vision, and gastrointestinal issues, hypotonia, and high pain tolerance. This characterization of phenotypic overlap (IDD, speech challenges, autistic, and attention deficit traits) and differentiation (somatic and heart issue risks for SETBP1-RD) between the distinct neurodevelopmental disorders SETBP1-HD and SETBP1-RD is critical for medical management and diagnosis.

3.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791571

RESUMEN

Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.


Asunto(s)
Hiperinsulinismo Congénito , Heterogeneidad Genética , Hipoglucemia , Mutación , Fenotipo , Receptores de Sulfonilureas , Humanos , Hiperinsulinismo Congénito/genética , Receptores de Sulfonilureas/genética , Femenino , Recién Nacido , Masculino , Hipoglucemia/genética , Lactante , Canales de Potasio de Rectificación Interna/genética
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731905

RESUMEN

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Asunto(s)
Cricetulus , Canal de Sodio Activado por Voltaje NAV1.5 , Linaje , Penetrancia , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Humanos , Animales , Células CHO , Femenino , Masculino , Adulto , Persona de Mediana Edad , España , Mutación con Pérdida de Función , Fenotipo , Mutación
5.
Ecol Lett ; 26(5): 706-716, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36888564

RESUMEN

Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.


Asunto(s)
Mamíferos , Reproducción , Animales , Estaciones del Año
6.
Am J Med Genet A ; 191(1): 205-219, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317839

RESUMEN

Many unbalanced large copy number variants reviewed in the paper are associated with syndromic orofacial clefts, including a 1.6 Mb deletion on chromosome 3q29. The current report presents a new family with this recurrent deletion identified via whole-exome sequencing and confirmed by array comparative genomic hybridization. The proband exhibited a more severe clinical phenotype than his affected mother, comprising right-sided cleft lip/alveolus and cleft palate, advanced dental caries, heart defect, hypospadias, psychomotor, and speech delay, and an intellectual disability. Data analysis from the 3q29 registry revealed that the 3q29 deletion increases the risk of clefting by nearly 30-fold. No additional rare and pathogenic nucleotide variants were identified that could explain the clefting phenotype and observed intrafamilial phenotypic heterogeneity. These data suggest that the 3q29 deletion may be the primary risk factor for clefting, with additional genomic variants located outside the coding sequences, methylation changes, or environmental exposure serving as modifiers of this risk. Additional studies, including whole-genome sequencing or methylation analyses, should be performed to identify genetic factors underlying the phenotypic variation associated with the recurrent 3q29 deletion.


Asunto(s)
Labio Leporino , Fisura del Paladar , Caries Dental , Masculino , Humanos , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Secuenciación del Exoma , Hibridación Genómica Comparativa , Síndrome
7.
Am J Med Genet A ; 191(12): 2890-2897, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37654102

RESUMEN

Mitochondrial disorders can present with a wide range of clinical and biochemical phenotypes. Mitochondrial DNA variants may be influenced by factors such as degree of heteroplasmy and tissue distribution. We present a four-generation family in which 10 individuals carry a pathogenic mitochondrial variant (m.5537_5538insT, MT-TW gene) with differing levels of heteroplasmy and clinical features. This genetic variant has been documented in two prior reports, both in individuals with Leigh syndrome. In the current family, three individuals have severe mitochondrial symptoms including Leigh syndrome (patient 1, 100% in blood), MELAS (patient 2, 97% heteroplasmy in muscle), and MELAS-like syndrome (patient 3, 50% heteroplasmy in blood and 100% in urine). Two individuals have mild mitochondrial symptoms (patient 4, 50% in blood and 67% in urine and patient 5, 50% heteroplasmy in blood and 30% in urine). We observe that this variant is associated with multiple mitochondrial presentations and phenotypes, including MELAS syndrome for which this variant has not previously been reported. We also demonstrate that the level of heteroplasmy of the mitochondrial DNA variant correlates with the severity of clinical presentation; however, not with the specific mitochondrial syndrome.


Asunto(s)
Enfermedad de Leigh , Síndrome MELAS , Enfermedades Mitocondriales , Humanos , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/complicaciones , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/complicaciones , Mitocondrias/genética , ADN Mitocondrial/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/complicaciones
8.
J Exp Biol ; 226(14)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357638

RESUMEN

Neotropical cichlids demonstrate an enormous diversity of pigment patterns, a morphological trait that plays an important role in adaptation and speciation. It has been suggested that alterations of the activity of the thyroid axis, one of the main endocrine axes regulating fish ontogeny, are involved in the development and diversification of pigment patterns in Neotropical cichlids. To test this hypothesis, we assessed thyroid hormone developmental dynamics and pigment patterning, and experimentally induced hyperthyroidism and hypothyroidism at different developmental stages in the convict cichlid, Amatitlania nigrofasciata, and blue-eye cichlid, Cryptoheros spilurus. We found that the two species display a similar type of coloration development and similar reactions to changes of thyroid hormone level, but species-specific differences in hormonal dynamics and thyroid hormone responsiveness. These findings indicate that thyroid hormone is a necessary but not sufficient signal to induce the transition from larval to juvenile coloration, and is a component of a complex, concerted endocrine cascade that drives skin development.


Asunto(s)
Cíclidos , Animales , Cíclidos/fisiología , Hormonas Tiroideas , Adaptación Fisiológica
9.
Mol Biol Rep ; 50(12): 9963-9970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897612

RESUMEN

BACKGROUND: Bardet-Biedl Syndrome (BBS) is a rare (1:13,500-1-160,000) heterogeneous congenital disorder, characterized by postaxial polydactyly, obesity, hypogonadism, rod-cone dystrophy, cognitive impairment, and renal abnormalities (renal cystic dysplasia, anatomical malformation). To date about twenty-five genes have been identified to cause BBS, which accounts for about 80% of BBS diagnosis. METHODS: In the current study, we have performed mutational screening of four Pakistani consanguineous families (A-D) with clinical manifestation of BBS by microsatellite-based genotyping and whole exome sequencing. RESULTS: Analysis of the data revealed four variants, including a novel/unique inheritance pattern of compound heterozygous variants, p.(Ser40*) and p.(Thr259Leufs*21), in MKKS gene, novel homozygous variant, p.(Gly251Val)] in BBS7 gene and two previously reported p.(Thr259Leufs*21) in MKKS and p.(Met1Lys) in BBS5 gene. The variants were found segregated with the disorder within the families. CONCLUSION: The study not only expanded mutations spectrum in the BBS genes, but this will facilitate diagnosis and genetic counselling of families carrying BBS related phenotypes in Pakistani population.


Asunto(s)
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidad , Linaje , Análisis Mutacional de ADN , Mutación/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión a Fosfato
10.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834635

RESUMEN

Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.


Asunto(s)
Hiperlipoproteinemia Tipo II , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , LDL-Colesterol/genética , Heterogeneidad Genética , Hiperlipoproteinemia Tipo II/genética , Fenotipo , Receptores de LDL/genética , Mutación
11.
BMC Bioinformatics ; 23(1): 509, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443677

RESUMEN

BACKGROUND: Research on gene duplication is abundant and comes from a wide range of approaches, from high-throughput analyses and experimental evolution to bioinformatics and theoretical models. Notwithstanding, a consensus is still lacking regarding evolutionary mechanisms involved in evolution through gene duplication as well as the conditions that affect them. We argue that a better understanding of evolution through gene duplication requires considering explicitly that genes do not act in isolation. It demands studying how the perturbation that gene duplication implies percolates through the web of gene interactions. Due to evolution's contingent nature, the paths that lead to the final fate of duplicates must depend strongly on the early stages of gene duplication, before gene copies have accumulated distinctive changes. METHODS: Here we use a widely-known model of gene regulatory networks to study how gene duplication affects network behavior in early stages. Such networks comprise sets of genes that cross-regulate. They organize gene activity creating the gene expression patterns that give cells their phenotypic properties. We focus on how duplication affects two evolutionarily relevant properties of gene regulatory networks: mitigation of the effect of new mutations and access to new phenotypic variants through mutation. RESULTS: Among other observations, we find that those networks that are better at maintaining the original phenotype after duplication are usually also better at buffering the effect of single interaction mutations and that duplication tends to enhance further this ability. Moreover, the effect of mutations after duplication depends on both the kind of mutation and genes involved in it. We also found that those phenotypes that had easier access through mutation before duplication had higher chances of remaining accessible through new mutations after duplication. CONCLUSION: Our results support that gene duplication often mitigates the impact of new mutations and that this effect is not merely due to changes in the number of genes. The work that we put forward helps to identify conditions under which gene duplication may enhance evolvability and robustness to mutations.


Asunto(s)
Duplicación de Gen , Redes Reguladoras de Genes , Mutación , Fenotipo , Variación Biológica Poblacional
12.
Clin Genet ; 101(1): 127-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612517

RESUMEN

Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007-0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype.


Asunto(s)
Alelos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Proteínas de la Membrana/genética , Tronco Arterial/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Sustitución de Aminoácidos , Familia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Fenotipo
13.
Am J Med Genet A ; 188(11): 3358-3363, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053530

RESUMEN

RERE-related disorders, also known as Neurodevelopmental Disorders with or without Anomalies of the Brain, Eye, or Heart (NEDBEH), are caused by heterozygous pathogenic variants in the arginine-glutamic acid dipeptide repeats gene (RERE). Up-to-date, 20 cases have been reported with the core characteristics of developmental delay, intellectual disability, and/or autism spectrum disorder. Here, we describe three additional cases. In the first case, the patient was found to have a previously reported de novo missense variant; her clinical findings of global developmental delay, intellectual disability, autism spectrum disorder, vision abnormalities, musculoskeletal anomalies, dysmorphic facial features, and a congenital heart defect strengthen existing genotype-phenotype correlations. We also describe the first inherited variant in RERE, found in a patient (case 2) with developmental delay, autism, and hyperopia and his mother (case 3) with ADHD, myopia, and history of mild speech delay. Lastly, by summarizing the clinical features presented in the 23 cases now reported, we provide an updated review of the literature.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Arginina/genética , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Variación Biológica Poblacional , Proteínas Portadoras/genética , Dipéptidos/genética , Femenino , Ácido Glutámico/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo
14.
Am J Med Genet A ; 188(7): 1954-1963, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35285131

RESUMEN

DYRK1A haploinsufficiency syndrome is a well-established neurodevelopmental disorder, but detailed information on the range of cognitive and behavioral issues associated with the condition is limited. We studied 24 participants with likely pathogenic or pathogenic variants in DYRK1A through the Simons Searchlight study and systematically assessed their medical history and development using standardized instruments: Vineland Adaptive Behavior Scale II (VABS-II) and Child Behavior Checklists/1.5-5 and 6-18 (CBCL/1.5-5, CBCL/6-18). All of the individuals in the cohort had neurological manifestations including intellectual disability or developmental delay, microcephaly, autism spectrum disorder, and/or seizures. The severity of the neurodevelopmental disorder was variable with a few children scoring in the moderately low range on the adaptive behavior composite score on the VABS-II. This study confirms the association of DYRK1A haploinsufficiency with neurodevelopmental disabilities, microcephaly, autism spectrum disorder, and epilepsy and quantifies the range of adaptive behaviors.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Microcefalia , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Niño , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Síndrome
15.
Pediatr Nephrol ; 37(7): 1495-1509, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34414500

RESUMEN

Monogenic disorders of hypertension are a distinct group of diseases causing dysregulation of the renin-angiotensin-aldosterone system and are characterized by low plasma renin activity. These can chiefly be classified as causing (i) excessive aldosterone synthesis (familial hyperaldosteronism), (ii) dysregulated adrenal steroid metabolism and action (apparent mineralocorticoid excess, congenital adrenal hyperplasia, activating mineralocorticoid receptor mutation, primary glucocorticoid resistance), and (iii) hyperactivity of sodium and chloride transporters in the distal tubule (Liddle syndrome and pseudohypoaldosteronism type 2). The final common pathway is plasma volume expansion and catecholamine/sympathetic excess that causes urinary potassium wasting; hypokalemia and early-onset refractory hypertension are characteristic. However, several single gene defects may show phenotypic heterogeneity, presenting with mild hypertension with normal electrolytes. Evaluation is based on careful attention to family history, physical examination, and measurement of blood levels of potassium, renin, and aldosterone. Genetic sequencing is essential for precise diagnosis and individualized therapy. Early recognition and specific management improves prognosis and prevents long-term sequelae of severe hypertension.


Asunto(s)
Hiperaldosteronismo , Hipertensión , Aldosterona/metabolismo , Humanos , Hiperaldosteronismo/complicaciones , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/genética , Hipertensión/diagnóstico , Hipertensión/genética , Potasio , Renina
16.
Pediatr Dermatol ; 39(4): 650-652, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35229899

RESUMEN

CEDNIK syndrome is a rare autosomal recessive syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma of which 25 cases from 19 families have been reported to date. It is a progressive neurodegenerative disorder caused by the loss-of-function pathogenic variant of the SNAP29 gene encoding a member of the SNARE family of proteins. We describe two female siblings from a Syrian parent-related family with CEDNIK syndrome due to homozygous pathogenic variant in SNAP29 [c.223delG(p.Val75Serf*28)]. Palmoplantar keratoderma, reported as a cardinal sign in CEDNIK syndrome, was absent in both patients as of the last follow-up, and one of our patients had a verrucous venous malformation, a finding that has not been previously reported.


Asunto(s)
Queratodermia Palmoplantar , Proteínas Qc-SNARE , Variación Biológica Poblacional , Femenino , Humanos , Queratodermia Palmoplantar/diagnóstico , Queratodermia Palmoplantar/genética , Síndromes Neurocutáneos , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética
17.
Rep Prog Phys ; 84(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34825896

RESUMEN

The observation that phenotypic variability is ubiquitous in isogenic populations has led to a multitude of experimental and theoretical studies seeking to probe the causes and consequences of this variability. Whether it be in the context of antibiotic treatments or exponential growth in constant environments, non-genetic variability has significant effects on population dynamics. Here, we review research that elucidates the relationship between cell-to-cell variability and population dynamics. After summarizing the relevant experimental observations, we discuss models of bet-hedging and phenotypic switching. In the context of these models, we discuss how switching between phenotypes at the single-cell level can help populations survive in uncertain environments. Next, we review more fine-grained models of phenotypic variability where the relationship between single-cell growth rates, generation times and cell sizes is explicitly considered. Variability in these traits can have significant effects on the population dynamics, even in a constant environment. We show how these effects can be highly sensitive to the underlying model assumptions. We close by discussing a number of open questions, such as how environmental and intrinsic variability interact and what the role of non-genetic variability in evolutionary dynamics is.


Asunto(s)
Ambiente , Selección Genética , Evolución Biológica , Fenotipo , Dinámica Poblacional
18.
Curr Genet ; 67(1): 65-77, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33037901

RESUMEN

The notion that there is a one-one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.


Asunto(s)
Evolución Biológica , Epigénesis Genética/genética , Evolución Molecular , Estudios de Asociación Genética , Animales , Secuencia de Bases/genética , Interacción Gen-Ambiente , Código de Histonas/genética
19.
Yeast ; 38(8): 453-470, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844327

RESUMEN

Populations of microbes are constantly evolving heterogeneity that selection acts upon, yet heterogeneity is nontrivial to assess methodologically. The necessary practice of isolating single-cell colonies and thus subclone lineages for establishing, transferring, and using a strain results in single-cell bottlenecks with a generally neglected effect on the characteristics of the strain itself. Here, we present evidence that various subclone lineages for industrial yeasts sequenced for recent genomic studies show considerable differences, ranging from loss of heterozygosity to aneuploidies. Subsequently, we assessed whether phenotypic heterogeneity is also observable in industrial yeast, by individually testing subclone lineages obtained from products. Phenotyping of industrial yeast samples and their newly isolated subclones showed that single-cell bottlenecks during isolation can indeed considerably influence the observable phenotype. Next, we decoupled fitness distributions on the level of individual cells from clonal interference by plating single-cell colonies and quantifying colony area distributions. We describe and apply an approach using statistical modeling to compare the heterogeneity in phenotypes across samples and subclone lineages. One strain was further used to show how individual subclonal lineages are remarkably different not just in phenotype but also in the level of heterogeneity in phenotype. With these observations, we call attention to the fact that choosing an initial clonal lineage from an industrial yeast strain may vastly influence downstream performances and observations on karyotype, on phenotype, and also on heterogeneity.


Asunto(s)
Genoma Fúngico , Fenotipo , Saccharomyces/clasificación , Saccharomyces/genética , Variación Genética , Microbiología Industrial/métodos , Modelos Estadísticos , Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
20.
New Phytol ; 229(6): 3497-3507, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33111354

RESUMEN

Phenotypic plasticity, within and across generations (transgenerational plasticity), allows organisms and their progeny to adapt to the environment without modification of the underlying DNA. Recent findings suggest that epigenetic modifications are important mediators of such plasticity. However, empirical studies have, so far, mainly focused on plasticity in response to abiotic factors, overlooking the response to competition. We tested for within-generation and transgenerational phenotypic plasticity triggered by plant-plant competition intensity, and we tested whether it was mediated via DNA methylation, using the perennial, apomictic herb Taraxacum brevicorniculatum in four coordinated experiments. We then tested the consequences of transgenerational plasticity affecting competitive interactions of the offspring and ecosystem processes, such as decomposition. We found that, by promoting differences in DNA methylation, offspring of plants under stronger competition developed faster and presented more resource-conservative phenotypes. Further, these adjustments associated with less degradable leaves, which have the potential to reduce nutrient turnover and might, in turn, favour plants with more conservative traits. Greater parental competition enhanced competitive abilities of the offspring, by triggering adaptive phenotypic plasticity, and decreased offspring leaf decomposability. Our results suggest that competition-induced transgenerational effects could promote rapid adaptations and species coexistence and feed back on biodiversity assembly and nutrient cycling.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Metilación de ADN , Fenotipo , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda