Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Glob Chang Biol ; 30(3): e17191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433338

RESUMEN

The response to climate change in highly dimorphic species can be hindered by differences between sexes in habitat preferences and movement patterns. The Antarctic fur seal, Arctocephalus gazella, is the most abundant pinniped in the Southern Hemisphere, and one of the main consumers of Antarctic krill, Euphausia superba, in the Southern Ocean. However, the populations breeding in the Atlantic Southern Ocean are decreasing, partly due to global warming. Male and female Antarctic fur seals differ greatly in body size and foraging ecology, and little is known about their sex-specific responses to climate change. We used satellite tracking data and Earth System Models to predict changes in habitat suitability for male and female Antarctic fur seals from the Western Antarctic Peninsula under different climate change scenarios. Under the most extreme scenario (SSP5-8.5; global average temperature +4.4°C projected by 2100), suitable habitat patches will shift southward during the non-breeding season, leading to a minor overall habitat loss. The impact will be more pronounced for females than for males. The reduction of winter foraging grounds might decrease the survival of post-weaned females, reducing recruitment and jeopardizing population viability. During the breeding season, when males fast on land, suitable foraging grounds for females off the South Shetland Islands will remain largely unmodified, and new ones will emerge in the Bellingshausen Sea. As Antarctic fur seals are income breeders, the foraging grounds of females should be reasonably close to the breeding colony. As a result, the new suitable foraging grounds will be useful for females only if nearby beaches currently covered by sea ice emerge by the end of the century. Furthermore, the colonization of these new, ice-free breeding locations might be limited by strong female philopatry. These results should be considered when managing the fisheries of Antarctic krill in the Southern Ocean.


La resposta al canvi climàtic en espècies amb dimorfisme sexual pot veure's dificultada per les diferències entre sexes respecte a les seves preferències d'ús de l'hàbitat i els seus patrons de moviment. L'os marí antàrtic (Arctocephalus gazella), és el pinnípede més abundant a l'Hemisferi Sud i un dels principals consumidors de krill antàrtic, (Euphausia superba), a l'Oceà Antàrtic. No obstant això, les poblacions que es reprodueixen al sector Atlàntic de l'Oceà Antàrtic estan disminuint, en part a causa de l'escalfament global. Els mascles i les femelles de l'os marí antàrtic difereixen considerablement en la seva mida corporal i ecologia tròfica, i es té poc coneixement sobre les seves respostes específiques al canvi climàtic. En aquest estudi hem utilitzat dades de seguiment per satèl·lit i models del Sistema Terrestre per predir els canvis en la idoneïtat de l'hàbitat per als mascles i les femelles d'os marí antàrtic de la Península Antàrtica Occidental sota diferents escenaris de canvi climàtic. Sota l'escenari més extrem (SSP5-8.5; temperatura mitjana mundial +4.4°C prevista per a 2100), les zones d'hàbitat idoni es desplaçaran cap al sud durant l'època d'hivernada (no reproducció), provocant una lleugera pèrdua d'hàbitat idoni. Tot i això, l'impacte serà més pronunciat per a les femelles que per als mascles. Aquesta reducció dels territoris d'alimentació durant l'hivern podria disminuir la supervivència de les femelles postdeslletades, reduint-ne el reclutament i posant en perill la viabilitat de la població. Durant l'època de cria, quan els mascles es troben majoritàriament en dejú a terra, els territoris d'alimentació idonis per a les femelles al voltant de les Illes Shetland del Sud romandran en gran part sense modificar-se, i n'emergiran de nous al mar de Bellingshausen. Com que les femelles d'os marí antàrtic es continuen alimentant durant la cria, els territoris d'alimentació de les femelles han d'estar raonablement a prop de la colònia de cria. Com a resultat, aquestes noves zones d'alimentació seran útils només si les platges properes, actualment cobertes de gel marí, emergeixen al llarg del segle. A més, la colonització d'aquests nous llocs de reproducció lliures de gel podria veure's limitada per la forta filopatria de les femelles. Aquests resultats haurien de tenir-se en compte en la gestió de les pesqueries de krill a l'Oceà Antàrtic.


Asunto(s)
Lobos Marinos , Femenino , Masculino , Animales , Regiones Antárticas , Océano Atlántico , Tamaño Corporal , Cambio Climático
2.
Theor Popul Biol ; 157: 1-13, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417560

RESUMEN

Individuals delay natal dispersal for many reasons. There may be no place to disperse to; immediate dispersal or reproduction may be too costly; immediate dispersal may mean that the individual and their relatives miss the benefits of group living. Understanding the factors that lead to the evolution of delayed dispersal is important because delayed dispersal sets the stage for complex social groups and social behavior. Here, we study the evolution of delayed dispersal when the quality of the local environment is improved by greater numbers of individuals (e.g., safety in numbers). We assume that individuals who delay natal dispersal also expect to delay personal reproduction. In addition, we assume that improved environmental quality benefits manifest as changes to fecundity and survival. We are interested in how do the changes in these life-history features affect delayed dispersal. We use a model that ties evolution to population dynamics. We also aim to understand the relationship between levels of delayed dispersal and the probability of establishing as an independent breeder (a population-level feature) in response to changes in life-history details. Our model emphasizes kin selection and considers a sexual organism, which allows us to study parent-offspring conflict over delayed dispersal. At evolutionary equilibrium, fecundity and survival benefits of group size or quality promote higher levels of delayed dispersal over a larger set of life histories with one exception. The exception is for benefits of increased group size or quality reaped by the individuals who delay dispersal. There, the increased benefit does not change the life histories supporting delay dispersal. Next, in contrast to previous predictions, we find that a low probability of establishing in a new location is not always associated with a higher incidence of delayed dispersal. Finally, we find that increased personal benefits of delayed dispersal exacerbate the conflict between parents and their offspring. We discuss our findings in relation to previous theoretical and empirical work, especially work related to cooperative breeding.


Asunto(s)
Dinámica Poblacional , Animales , Evolución Biológica , Densidad de Población , Fertilidad , Conducta Social , Reproducción
3.
J Hum Evol ; 187: 103480, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38159536

RESUMEN

Dispersal patterns in primates have major implications for behavior and sociality but are difficult to reconstruct for fossil species. This study applies novel strontium isotope methodologies that have reliably predicted philopatry and dispersal patterns in chimpanzees and other modern primates to previously published strontium isotope ratios (87Sr/86Sr) of two South African hominins, Australopithecus africanus and Australopithecus robustus. In this study, the difference or 'offset' was calculated between the 87Sr/86Sr of each fossil tooth compared to local bioavailable 87Sr/86Sr as defined by cluster analysis of modern plant isotope ratios. Large teeth (presumably belonging to males) have low offsets from local 87Sr/86Sr proxies, while small teeth (presumably from females) have greater offsets from local 87Sr/86Sr proxies. This supports previous conclusions of male philopatry and female dispersal in both A. africanus and A. robustus. Furthermore, A. robustus shows more extreme differences between presumed males and females compared to A. africanus. This is analogous to differences seen in modern olive baboons compared to chimpanzees and suggests that A. africanus may have had a larger home range than A. robustus. Neither hominin species has 87Sr/86Sr consistent with riparian habitat preferences despite the demonstrated presence of riparian habitats in South Africa at the time.


Asunto(s)
Hominidae , Anomalías Dentarias , Masculino , Animales , Femenino , Pan troglodytes , Sudáfrica , Isótopos de Estroncio/análisis , Ecosistema , Fósiles
4.
Conserv Biol ; 38(4): e14239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38375602

RESUMEN

Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta-analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole-island surveys and long-term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011-2014. We compared surveys from 1976-1979 and 2017-2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white-headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west-facing slopes close to ridgelines at low elevation (i.e., high-quality petrel habitat). They overlapped <5% with the distribution of Antarctic prion and white-headed petrels which occurred in suboptimal shallow, wet, east-facing slopes at high elevation. We inferred that the speed of population growth of recolonizing species was related to their numerically smaller starting size compared with the established species and was driven by immigration and selection of ideal habitat.


Patrones de recuperación en aves marinas existentes y extirpadas después de la mayor erradicación mundial de multidepredadores Resumen La erradicación de depredadores invasores en las islas puede derivar en la recuperación sustancial de aves marinas, aunque entendemos muy poco los mecanismos que causan los cambios poblacionales. Los metaanálisis recientes han revelado que la inmigración es de gran importancia para la recuperación de aves marinas filopátricas, aunque no sabemos si la dispersión y la filopatría interactúan de forma predecible para poder determinar las tasas de crecimiento poblacional y los cambios en la distribución. Aplicamos censos de isla completa y parcelas de monitoreo a largo plazo para estudiar la abundancia, distribución y tendencias de cuatro especies de aves marinas cavadoras en la Isla Macquarie, Australia, para analizar los impactos heredados de las especies invasoras y la respuesta continua a la mayor erradicación mundial de varias especies de vertebrados. El rascón weka (Gallirallus australis) se erradicó en 1988; los gatos (Felis catus) en 2001; y los conejos (Oryctolagus cuniculus), ratas (Rattus rattus) y ratones (Mus mus) entre 2011 y 2014. Comparamos los censos de 1976­1979 y 2017­2018 y el monitoreo realizado en los 90s y del año 2000 en adelante. El pato petrel antártico (Pachyptila desolata) y el petrel cabeciblanco (Pterodroma lessonii) incrementaron ∼1% por año. El petrel azulado (Halobaena caerulea) y la pardela gris (Procellaria cinerea) recolonizaron la isla después de su extirpación en la década de 1900, pero todavía eran especies raras espacial y numéricamente en 2018. Sin embargo, esta especie incrementó rápidamente en un 14% y 10% por año respectivamente desde que se erradicaron los gatos en 2001. La recolonización ocurrió desde las laderas empinadas, secas y con orientación al oeste en los sistemas montañosos de baja elevación (es decir, hábitats de gran calidad para los petreles). La distribución del petrel azulado y la pardela gris ocurrió en laderas someras subóptimas y húmedas con orientación al este a altas elevaciones. Esta distribución se traslapó menos del 5% con la del pato petrel antártico y la del petrel cabeciblanco. Inferimos que la velocidad del crecimiento poblacional de las especies que recolonizaron estuvo relacionada con el menor tamaño inicial en comparación con las especies establecidas y fue causada por la inmigración y la selección del hábitat ideal.


Asunto(s)
Aves , Crecimiento Demográfico , Islas , Australia , Especies Introducidas/estadística & datos numéricos , Regulación de la Población/estadística & datos numéricos , Conducta Predatoria , Animales , Ratones , Ratas , Gatos , Conejos
5.
Evol Anthropol ; 33(1): e22014, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109039

RESUMEN

In most primate species, males transfer out of their natal groups, resulting in groups of unrelated males. However, in a few species, including humans, males remain in their groups and form life-long associations with each other. This pattern of male philopatry is linked with cooperative male behaviors, including border patrols and predator defense. Because females in male-philopatric species form weaker kin networks with each other than in female-philopatric species, they are expected to evolve counter-strategies to male sexual coercion that are relatively independent of support from other females. Studies of male-philopatric nonhuman primates can provide insight into the evolutionary basis of prosocial behaviors, cooperation, and group action in humans and offer comparative models for understanding the sociality of other hominin species. This review will discuss patterns of dispersal and philopatry across primates, explore the resulting male and female behaviors, and argue that male-philopatric nonhuman primate species offer insight into the social and sexual dynamics of hominins throughout evolution.


Asunto(s)
Hominidae , Conducta Social , Humanos , Animales , Masculino , Femenino , Conducta Cooperativa , Primates
6.
Mol Ecol ; 32(8): 1875-1892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36652544

RESUMEN

Species living in high mountain areas are currently threatened by climate change and human land use changes. High-elevation birds frequently inhabit island-like suitable patches around mountain peaks, and in such conditions the capability to exchange individuals among patches is crucial to maintain gene flow. However, we lack information regarding the dispersal ability of most of these species and the possible influence of landscape features on dispersal. In this study, we used population genomics and landscape resistance modelling to investigate dispersal in a high-elevation specialist migratory bird, the water pipit Anthus spinoletta. We aimed to assess the levels of gene flow in this species within a wide area of the European Alps, and to assess the effects of environmental characteristics on gene flow, by testing the isolation by distance (IBD) hypothesis against the isolation by resistance (IBR) hypothesis. We found clear support for IBR, indicating that water pipits preferentially disperse across suitable breeding habitat (i.e., high-elevation grassland). IBR was stronger in the part of the study area with less extended suitable habitat. Landscape resistance was slightly better described by habitat suitability models than landscape connectivity models. Despite the observed IBR, gene flow within the study area was high, probably also because of the still wide and relatively continuous breeding range. The forecasted reduction of range of this species may lead to stronger effects of IBR on gene flow. Other high-elevation specialist birds may show similar IBR patterns, but with possibly stronger effects on gene flow because of their more reduced and patchy habitats.


Asunto(s)
Passeriformes , Animales , Humanos , Ecosistema , Cambio Climático , Flujo Génico , Agua
7.
Mol Ecol ; 32(18): 4953-4970, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37566208

RESUMEN

Understanding how interactions among microevolutionary forces generate genetic population structure of exploited species is vital to the implementation of management policies that facilitate persistence. Philopatry displayed by many coastal shark species can impact gene flow and facilitate selection, and has direct implications for the spatial scales of management. Here, genetic structure of the blacktip shark (Carcharhinus limbatus) was examined using a mixed-marker approach employing mitochondrial control region sequences and 4339 SNP-containing loci generated using ddRAD-Seq. Genetic variation was assessed among young-of-the-year sampled in 11 sites in waters of the United States in the western North Atlantic Ocean, including the Gulf of Mexico. Spatial and environmental analyses detected 68 nuclear loci putatively under selection, enabling separate assessments of neutral and adaptive genetic structure. Both mitochondrial and neutral SNP data indicated three genetically distinct units-the Atlantic, eastern Gulf, and western Gulf-that align with regional stocks and suggest regional philopatry by males and females. Heterogeneity at loci putatively under selection, associated with temperature and salinity, was observed among sites within Gulf units, suggesting local adaptation. Furthermore, five pairs of siblings were identified in the same site across timescales corresponding with female reproductive cycles. This indicates that females re-used a site for parturition, which has the potential to facilitate the sorting of adaptive variation among neighbouring sites. The results demonstrate differential impacts of microevolutionary forces at varying spatial scales and highlight the importance of conserving essential habitats to maintain sources of adaptive variation that may buffer species against environmental change.


Asunto(s)
Genética de Población , Tiburones , Animales , Masculino , Femenino , Haplotipos/genética , Océano Atlántico , Tiburones/genética , Estructuras Genéticas
8.
J Evol Biol ; 36(1): 95-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36420993

RESUMEN

The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother-offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.


Asunto(s)
Endogamia , Semen , Animales , Masculino , Variación Genética , Invertebrados/genética , Reproducción/genética , Autofecundación
9.
Biol Lett ; 19(3): 20220528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36855856

RESUMEN

Split sex ratios provide broad insights into how reproductive strategies evolve, and historically have special relevance to the evolution of eusociality. Yet almost no attention has been directed to situations where split sex ratios may potentially decrease the payoffs for worker-like behaviour, increasing selective thresholds for eusociality. We examined sex ratios in a facultatively social colletid bee, Amphylaeus morosus. Sex ratios in this bee vary strongly with the presence of a nest guard and in a pattern that does not conform to assumptions of previous models in which split sex ratios facilitate altruism. While the production of daughters was constant across social and solitary nests, mothers produced more brood when a non-reproductive guard was present, but these extra brood were all male. This leads to split sex ratios, vicariously driven by guards that are unable to manipulate sex ratios in their favour. Importantly, if guarding becomes more common in a population this would lead to an excess of males and lower the genetic value of these extra males to guards, effectively putting a brake on selection for worker-like behaviour.


Asunto(s)
Altruismo , Razón de Masculinidad , Masculino , Animales , Abejas , Femenino , Humanos , Madres , Reproducción
10.
Mol Ecol ; 31(1): 391-406, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34661321

RESUMEN

Dispersal is a fundamental process in the functioning of animal societies as it regulates the degree to which closely related individuals are spatially concentrated. A species' dispersal pattern can be complex as it emerges from individuals' decisions shaped by the cost-benefit tradeoffs associated with either remaining in the natal group or dispersing. Given the potential complexity, combining long-term demographic information with molecular data can provide important insights into dispersal patterns of a species. Based on a 15-year study that integrates multiyear demographic data on six groups with longitudinal and cross-sectional genetic sampling of 20 groups (N = 169 individuals, N = 21 polymorphic microsatellite loci), we describe the various dispersal strategies of male and female black howler monkeys (Alouatta pigra) inhabiting Palenque National Park, Mexico. Genetically confirmed dispersal events (N = 21 of 59 males; N = 6 of 65 females) together with spatial autocorrelation analyses revealed that the dispersal pattern of black howlers is bisexual with strong sex-biases in both dispersal rate (males disperse more often than females) and dispersal distance (females disperse farther than males). Observational and genetic data confirm that both males and females can successfully immigrate into established groups, as well as form new groups with other dispersing individuals. Additionally, both males and females may disperse singly, as well as in pairs, and both may also disperse secondarily. Overall, our findings suggest multiple dispersal trajectories for black howler males and females, and longer multiyear studies are needed to unravel which demographic, ecological and social factors underlie individuals' decisions about whether to disperse and which dispersal options to take.


La dispersión es un proceso fundamental en el funcionamiento de las sociedades animales, ya que regula el grado en que los individuos parentados se concentran espacialmente. El patrón de dispersión de una especie puede ser complejo ya que surge de las decisiones de los individuos conformadas por las compensaciones de costo-beneficio asociadas con permanecer en el grupo natal o dispersarse. Dada esta posible complejidad, la combinación de información demográfica a largo plazo con datos moleculares puede proporcionar información importante sobre los patrones de dispersión de una especie en particular. Basado en un estudio de 15 años que integra datos demográficos de seis grupos sociales con muestreo genético longitudinal y transversal de 20 grupos (N = 169 individuos, N = 21 loci de microsatélites polimórficos), describimos las diversas estrategias de dispersión de machos y hembras del mono aullador negro (Alouatta pigra) que habitan el Parque Nacional Palenque, México. Los eventos de dispersión confirmados genéticamente (N = 21 de 59 machos; N = 6 de 65 hembras), junto con los análisis de autocorrelación espacial revelaron que el patrón de dispersión de los monos aulladores negros es bisexual con fuertes sesgos sexuales en ambas tasas de dispersión (los machos se dispersan más a menudo que las hembras) y distancia de dispersión (las hembras se dispersan más lejos que los machos). Los datos de observación y genéticos confirman que tanto machos como hembras pueden inmigrar con éxito a grupos ya establecidos, así como formar nuevos grupos con otros individuos que se están dispersando. Además, tanto los machos como las hembras pueden dispersarse individualmente, así como en parejas, y ambos también pueden dispersarse secundariamente. En general, nuestros hallazgos sugieren múltiples trayectorias de dispersión para aulladores negros de los dos sexos, y se necesitan más estudios para desentrañar qué factores demográficos, ecológicos y sociales subyacen en las decisiones de los individuos sobre si dispersarse y qué opciones de dispersión tomar.


Asunto(s)
Alouatta , Alouatta/genética , Animales , Estudios Transversales , Demografía , Femenino , Masculino , México
11.
Artículo en Inglés | MEDLINE | ID: mdl-34999936

RESUMEN

In addition to providing animals with a source of directional or 'compass' information, Earth's magnetic field also provides a potential source of positional or 'map' information that animals might exploit to assess location. In less than a generation, the idea that animals use Earth's magnetic field as a kind of map has gone from a contentious hypothesis to a well-established tenet of animal navigation. Diverse animals ranging from lobsters to birds are now known to use magnetic positional information for a variety of purposes, including staying on track along migratory pathways, adjusting food intake at appropriate points in a migration, remaining within a suitable oceanic region, and navigating toward specific goals. Recent findings also indicate that sea turtles, salmon, and at least some birds imprint on the magnetic field of their natal area when young and use this information to facilitate return as adults, a process that may underlie long-distance natal homing (a.k.a. natal philopatry) in many species. Despite recent progress, much remains to be learned about the organization of magnetic maps, how they develop, and how animals use them in navigation.


Asunto(s)
Migración Animal , Tortugas , Migración Animal/fisiología , Animales , Aves/fisiología , Campos Magnéticos , Magnetismo , Tortugas/fisiología
12.
Am J Bot ; 109(1): 29-45, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34679185

RESUMEN

Many have noted limited seed dispersal of plants in diverse environments and attempted evolutionary explanations for it. Although philopatric ("love of fatherland") is used by zoologists to describe organisms that remain near their place of origin, philomatric ("love of motherland") is proposed as more appropriate for plants because seeds develop on the maternal parent, fecundity and dispersal are maternally influenced characteristics, and the term dovetails with the mother-site hypothesis (MSH) for the evolution of restricted dispersal. Proximate reasons for philomatry include intrinsic drivers such as morphological features of diaspores and where on the maternal parent they are produced. Extrinsic drivers include local environmental conditions, surrounding vegetation, and ineffective dispersal agents. The MSH proposes that selection should favor philomatry in a population adapted to a particular habitat because offspring will likewise be adapted to that same habitat. Several studies show philomatry can mitigate distance-dependent costs of dispersing into surrounding inhospitable areas. Undispersed diaspores can eliminate energetic costs of accessory structures or biochemicals needed by dispersible diaspores, but it is unclear whether these costs are significant to the evolution of philomatry. Disadvantages of limited dispersal are inability to escape deteriorating habitat conditions, inability to colonize new habitats, and inbreeding among offspring. Heterocarpic species offset these disadvantages by producing dispersed plus undispersed diaspores. A conceptual framework is presented relating dispersal distance to the probability of seedling establishment. Future research should recognize dispersal as a covarying syndrome of multiple life history traits and focus on ecological selection agents that favor philomatry.


Asunto(s)
Dispersión de Semillas , Ecosistema , Plantas , Plantones , Semillas
13.
Oecologia ; 199(2): 257-269, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35112173

RESUMEN

In tropical forests, large, old trees (LOTs) can be considered keystone structures for provisioning unique habitats such as decaying wood, roots, cavities, and epiphytes, including those that hold water (phytotelmata). These habitats may also be stratified in vertical space, for example, root structures occur at ground level and below, whereas epiphytes occur above-ground. Canopy habitat is utilized by a diversity of amphibians, but canopy habitat may only be viable in the wet season when epiphytes and surfaces are sufficiently saturated. Here, we examine how the provisioning of microhabitats and structures by LOTs influence the horizontal, vertical, and seasonal distribution patterns of phytotelmata-breeding poison frogs. We conducted ground-to-canopy surveys over 4 years, constituting 6 seasons, in Panama and used mark-recapture techniques on a population of the yellow-bellied poison frog, Andinobates fulguritus. We found that A. fulguritus migrated vertically, tracking seasonal rainfall, and displayed strong philopatry to individual trees. Furthermore, A. fulguritus almost exclusively inhabited the largest trees at the study location, which provided disproportionately high-quality microhabitats and epiphytes compared to other trees. LOTs, and specifically Anacardium excelsum at our site, appear to serve as keystone structures with high conservation value due to their provisioning of unique habitats. We conclude that the distribution of A. fulguritus is defined vertically by the stratification of arboreal microhabitat resources, horizontally by the presence of LOTs providing the resources, and temporally by the seasonal viability of the resources.


Asunto(s)
Venenos , Árboles , Animales , Anuros , Ecosistema , Fitomejoramiento , Estaciones del Año , Clima Tropical
14.
J Fish Biol ; 101(6): 1623-1627, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36208114

RESUMEN

This study describes the genetic diversity and level of genetic differentiation of the scalloped hammerhead shark Sphyrna lewini from eight putative nursery areas in the Mexican Pacific Ocean, using the mtDNA control region. Genetic analyses revealed a particular spatial divergence between La Reforma and all the remaining sites, with five exclusive haplotypes and the highest genetic diversity. This pattern may be interpreted as the signature of regional female philopatry, relatively to a particular female-mediated gene flow for La Reforma, which shows a strong subdivision in the Gulf of California.


Asunto(s)
Tiburones , Femenino , Animales , Tiburones/genética , Océano Pacífico , ADN Mitocondrial/genética , Haplotipos , México
15.
Proc Biol Sci ; 288(1946): 20202947, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715424

RESUMEN

Evolution should favour plasticity in dispersal decisions in response to spatial heterogeneity in social and environmental contexts. Sex differences in individual optimization of dispersal decisions are poorly documented in mammals, because species where both sexes commonly disperse are rare. To elucidate the sex-specific drivers governing dispersal, we investigated sex differences in condition dependence in the propensity and distance of natal dispersal in one such species, the roe deer, using fine-scale monitoring of 146 GPS-collared juveniles in an intensively monitored population in southwest France. Dispersal propensity increased with body mass in males such that 36% of light individuals dispersed, whereas 62% of heavy individuals did so, but there was no evidence for condition dependence in dispersal propensity among females. By contrast, dispersal distance increased with body mass at a similar rate in both sexes such that heavy dispersers travelled around twice as far as light dispersers. Sex differences in the strength of condition-dependent dispersal may result from different selection pressures acting on the behaviour of males and females. We suggest that females disperse prior to habitat saturation being reached, likely in relation to the risk of inbreeding. By contrast, natal dispersal in males is likely governed by competitive exclusion through male-male competition for breeding opportunities in this strongly territorial mammal. Our study is, to our knowledge, a first demonstration that condition dependence in dispersal propensity and dispersal distance may be decoupled, indicating contrasting selection pressures drive the behavioural decisions of whether or not to leave the natal range, and where to settle.


Asunto(s)
Ciervos , Herbivoria , Animales , Femenino , Francia , Humanos , Endogamia , Masculino , Caracteres Sexuales
16.
Mol Ecol ; 30(6): 1531-1544, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33502033

RESUMEN

The genetic structure of animal populations has considerable behavioural, ecological and evolutionary implications and may arise from various demographic traits. Here, we use observational field data and molecular genetics to determine the genetic structure of an invasive population of monk parakeets, Myiopsitta monachus, at a range of spatial scales, and investigate the demographic processes that generate the observed structure. Monk parakeets construct large nests that can house several pairs occupying separate chambers; these nests are often aggregated within nesting trees. We determined patterns of relatedness within compound nests, within nesting trees and between trees. Spatial autocorrelation analyses of pairwise genetic relatedness revealed fine-scale genetic structure with relatives of both sexes spatially clustered within, but not beyond, nesting trees. In addition, males were more related to males sharing their compound nests than to other males occupying the same nesting tree. By contrast, males and females within compound nests were not significantly more closely related than elsewhere in the same tree, and we found no evidence for inbreeding. Adults showed high breeding site fidelity between years despite considerable disturbance of nest sites. Natal dispersal was female-biased, but dispersal distances were relatively short with some natal philopatry observed in both sexes. Sibling coalitions, typically of males, were observed amongst both philopatric and dispersing birds. Our results show significant clustering of kin within compound nests and nesting trees resulting from limited and coordinated natal dispersal, with subsequent breeding site fidelity. The resulting genetic structure has implications for social behaviour in this unusual parrot species.


Asunto(s)
Loros , Fitomejoramiento , Animales , Evolución Biológica , Femenino , Masculino , Repeticiones de Microsatélite/genética , Periquitos/genética
17.
J Anim Ecol ; 90(4): 955-966, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481254

RESUMEN

While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.


Asunto(s)
Ciervos , Reno , África , Animales , Ecosistema , América del Norte
18.
Ecol Lett ; 23(3): 430-438, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31833181

RESUMEN

Dispersal is nearly universal; yet, which sex tends to disperse more and their success thereafter depends on the fitness consequences of dispersal. We asked if lifetime fitness differed between residents and immigrants (successful between-population dispersers) and their offspring using 29 years of monitoring from North American red squirrels (Tamiasciurus hudsonicus) in Canada. Compared to residents, immigrant females had 23% lower lifetime breeding success (LBS), while immigrant males had 29% higher LBS. Male immigration and female residency were favoured. Offspring born to immigrants had 15-43% lower LBS than offspring born to residents. We conclude that immigration benefitted males, but not females, which appeared to be making the best of a bad lot. Our results are in line with male-biased dispersal being driven by local mate competition and local resource enhancement, while the intergenerational cost to immigration is a new complication in explaining the drivers of sex-biased dispersal.


Asunto(s)
Emigrantes e Inmigrantes , Reproducción , Cruzamiento , Canadá , Femenino , Humanos , Masculino
19.
Proc Biol Sci ; 287(1930): 20201133, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32635871

RESUMEN

A central issue in evolutionary ecology is how patterns of dispersal influence patterns of relatedness in populations. In terrestrial organisms, limited dispersal of offspring leads to groups of related individuals. By contrast, for most marine organisms, larval dispersal in open waters is thought to minimize kin associations within populations. However, recent molecular evidence and theoretical approaches have shown that limited dispersal, sibling cohesion and/or differential reproductive success can lead to kin association and elevated relatedness. Here, we tested the hypothesis that limited dispersal explains small-scale patterns of relatedness in the pajama cardinalfish Sphaeramia nematoptera. We used 19 microsatellite markers to assess parentage of 233 juveniles and pairwise relatedness among 527 individuals from 41 groups in Kimbe Bay, Papua New Guinea. Our findings support three predictions of the limited dispersal hypothesis: (i) elevated relatedness within groups, compared with among groups and elevated relatedness within reefs compared with among reefs; (ii) a weak negative correlation of relatedness with distance; (iii) more juveniles than would be expected by chance in the same group and the same reef as their parents. We provide the first example for natal philopatry at the group level causing small-scale patterns of genetic relatedness in a marine fish.


Asunto(s)
Perciformes/fisiología , Dinámica Poblacional , Distribución Animal , Animales , Arrecifes de Coral , Peces , Repeticiones de Microsatélite , Papúa Nueva Guinea
20.
J Hum Evol ; 146: 102819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32736063

RESUMEN

The baboons (Papio sp.) exhibit marked interspecies variation in social behavior. The thesis presented here argues, first, that male philopatry is a crucial factor, arguably the crucial factor, underlying the other distinctive features (one-male units, multilevel society) shared by hamadryas and Guinea baboons, but not other species of Papio. The second suggestion is that male philopatry as a population norm was not an adaptation to a particular habitat or set of ecological circumstances but evolved in the common ancestor of hamadryas and Guinea baboons as a response to natural selection in the demographic context peculiar to the frontier of a rapidly expanding population. Other derived features of social structure (male-male tolerance, some facultative female dispersal) subsequently evolved to accommodate male philopatry. The mitochondrial genetic population structure of extant baboons preserves a footprint of the initial expansion of 'modern' Papio. Immediately after the expansion, male-philopatric, multilevel populations with a general physical and behavioral resemblance to Guinea baboons occupied the whole northern hemisphere range of the genus. Behavioral and physical autapomorphies of hamadryas baboons evolved in a subpopulation of this ancestral northern base, in response to a less productive habitat of the Horn of Africa. Subsequently, ancestral olive baboons 'reinvented' male dispersal. They and yellow baboons, another male-dispersing species, then replaced most of the male-philopatric northern populations, by male-driven introgression and nuclear swamping.


Asunto(s)
Evolución Biológica , Papio/psicología , Conducta Social , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda