Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(35): e2201975119, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994652

RESUMEN

SrTiO3, a quantum paralectric, displays a detectable phonon thermal Hall effect (THE). Here, we show that the amplitude of the THE is extremely sensitive to stoichiometry. It drastically decreases upon substitution of a tiny fraction of Sr atoms with Ca, which stabilizes the ferroelectric order. It drastically increases by an even lower density of oxygen vacancies, which turn the system to a dilute metal. The enhancement in the metallic state exceeds by far the sum of the electronic and the phononic contributions. We explain this observation as an outcome of three features: 1) Heat is mostly transported by phonons; 2) the electronic Hall angle is extremely large; and 3) there is substantial momentum exchange between electrons and phonons. Starting from Herring's picture of phonon drag, we arrive to a quantitative account of the enhanced THE. Thus, phonon drag, hitherto detected as an amplifier of thermoelectric coefficients, can generate a purely thermal transverse response in a dilute metal with a large Hall angle. Our results reveal a hitherto-unknown consequence of momentum-conserving collisions between electrons and phonons.

2.
Nano Lett ; 24(26): 8143-8150, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889312

RESUMEN

Two-dimensional (2D) materials have shown great potential in applications as transistors, where thermal dissipation becomes crucial because of the increasing energy density. Although the thermal conductivity of 2D materials has been extensively studied, interactions between nonequilibrium electrons and phonons, which can be strong when high electric fields and heat current coexist, are not considered. In this work, we systematically study the electron drag effect, where nonequilibrium electrons impart momenta to phonons and influence the thermal conductivity, in 2D semiconductors using ab initio simulations. We find that, at room temperature, electron drag can significantly increase thermal conductivity by decreasing phonon-electron scattering in 2D semiconductors while its impact in three-dimensional semiconductors is negligible. We attribute this difference to the large electron-phonon scattering phase space and larger contribution to thermal conductivity by drag-active phonons. Our work elucidates the fundamental physics underlying coupled electron-phonon transport in materials of various dimensionalities.

3.
Proc Natl Acad Sci U S A ; 117(25): 13929-13936, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522877

RESUMEN

Local impurity states arising from atomic vacancies in two-dimensional (2D) nanosheets are predicted to have a profound effect on charge transport due to resonant scattering and can be used to manipulate thermoelectric properties. However, the effects of these impurities are often masked by external fluctuations and turbostratic interfaces; therefore, it is challenging to probe the correlation between vacancy impurities and thermoelectric parameters experimentally. In this work, we demonstrate that n-type molybdenum disulfide (MoS2) supported on hexagonal boron nitride (h-BN) substrate reveals a large anomalous positive Seebeck coefficient with strong band hybridization. The presence of vacancies on MoS2 with a large conduction subband splitting of 50.0 ± 5.0 meV may contribute to Kondo insulator-like properties. Furthermore, by tuning the chemical potential, the thermoelectric power factor can be enhanced by up to two orders of magnitude to 50 mW m-1 K-2 Our work shows that defect engineering in 2D materials provides an effective strategy for controlling band structure and tuning thermoelectric transport.

4.
Nano Lett ; 19(6): 3770-3776, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31088057

RESUMEN

In typical thermoelectric energy harvesters and sensors, the Seebeck effect is caused by diffusion of electrons or holes in a temperature gradient. However, the Seebeck effect can also have a phonon drag component, due to momentum exchange between charge carriers and lattice phonons, which is more difficult to quantify. Here, we present the first study of phonon drag in the AlGaN/GaN two-dimensional electron gas (2DEG). We find that phonon drag does not contribute significantly to the thermoelectric behavior of devices with ∼100 nm GaN thickness, which suppresses the phonon mean free path. However, when the thickness is increased to ∼1.2 µm, up to 32% (88%) of the Seebeck coefficient at 300 K (50 K) can be attributed to the drag component. In turn, the phonon drag enables state-of-the-art thermoelectric power factor in the thicker GaN film, up to ∼40 mW m-1 K-2 at 50 K. By measuring the thermal conductivity of these AlGaN/GaN films, we show that the magnitude of the phonon drag can increase even when the thermal conductivity decreases. Decoupling of thermal conductivity and Seebeck coefficient could enable important advancements in thermoelectric power conversion with devices based on 2DEGs.

5.
Proc Natl Acad Sci U S A ; 112(48): 14777-82, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627231

RESUMEN

Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect--a coupling phenomenon between electrons and nonequilibrium phonons--in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼ 0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.

6.
Nano Lett ; 17(11): 6822-6827, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28841026

RESUMEN

When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric properties. Here we show that an effective "interlayer phonon drag" determines the Seebeck coecient (S) across the van der Waals gap formed in twisted bilayer graphene (tBLG). The cross-plane thermovoltage, which is nonmonotonic in both temperature and density, is generated through scattering of electrons by the out-of-plane layer breathing (ZO'/ZA2) phonon modes and differs dramatically from the expected Landauer-Buttiker formalism in conventional tunnel junctions. The tunability of the cross-plane Seebeck effect in van der Waals junctions may be valuable in creating a new genre of versatile thermoelectric systems with layered solids.

7.
Nano Lett ; 15(5): 3159-65, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25831487

RESUMEN

Existing theory and data cannot quantify the contribution of phonon drag to the Seebeck coefficient (S) in semiconductors at room temperature. We show that this is possible through comparative measurements between nanowires and the bulk. Phonon boundary scattering completely quenches phonon drag in silicon nanowires enabling quantification of its contribution to S in bulk silicon in the range 25-500 K. The contribution is surprisingly large (∼34%) at 300 K even at doping of ∼3 × 10(19) cm(-3). Our results contradict the notion that phonon drag is negligible in degenerate semiconductors at temperatures relevant for thermoelectric energy conversion. A revised theory of electron-phonon momentum exchange that accounts for a phonon mean free path spectrum agrees well with the data.

8.
Adv Mater ; 36(24): e2310944, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470991

RESUMEN

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering. Proving this idea, proposed by Peierls in 1932, requires tuning electron and phonon dispersions without changing symmetry, topology, or disorder. This is achieved by combining de Haas - van Alphen (dHvA), electron transport, Raman scattering, and first-principles calculations in the topological semimetals MX2 (M = Nb, Ta and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an order magnitude larger than single particle ones to nearly balanced. This occurs without changing the crystal structure or topology and with small differences in disorder or Fermi surface. Simultaneously, Raman scattering and first-principles calculations establish phonon-electron dominated scattering only in the MGe2 compounds. Thus, this study proves that phonon-drag is crucial to the transport properties of topological semimetals and provides insight to engineer these materials further.

9.
J Phys Condens Matter ; 36(31)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657621

RESUMEN

We have performed a comprehensive numerical and analytical examination of two crucial transport aspects in silicene: the phonon-drag thermopower,Sp, and the electron's energy loss rate,Fe. Specifically, our investigation is centered on their responses to out-of-plane flexural phonons and in-plane acoustic phonons in silicene, a two-dimensional allotrope of silicon as a function of electron temperature,T,and electron concentration,n,upto the room temperature. It is found that the calculated quantities have a non-monotonic dependence for the phonon modes for both parameters(T and n)considered while analytical results predict definite dependencies up to the complete low-temperature Bloch-Gruneisen (BG) regime. To provide a more comprehensive picture, we contrast the complete numerical outcomes with the approximated analytical BG results, revealing a convergence within a specific range of temperature and carrier concentration. In light of this convergence, we put forth suggestions to elucidate the underlying factors responsible for this behavior. A comparison based on the magnitude of the calculated quantities can be made from the figures between the two considered phonon modes, which clearly shows that the out-of-plane flexural phonons are effective throughout the considered temperature range. This observation leads us to posit that the dominating contribution of the out-of-plane flexural phonon modes hinges upon the deformation potential constant and phonon energy associated with the phonon mode. Our study carries significant implications for estimating the electrical and thermal properties of silicene and provides valuable insights for the development of devices based on silicene-based technologies.

10.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35636387

RESUMEN

We present a theory of phonon-drag thermopower,Sxxg, in MoS2monolayer at a low-temperature regime in the presence of a quantizing magnetic fieldB. Our calculations forSxxgconsider the electron-acoustic phonon interaction via deformation potential (DP) and piezoelectric (PE) couplings for longitudinal (LA) and transverse (TA) phonon modes. The unscreened TA-DP is found to dominateSxxgover other mechanisms. TheSxxgis found to oscillate with the magnetic field where the lifting effect of the valley and spin degeneracies in MoS2monolayer has been clearly observed. An enhancedSxxgwith a peak value of∼1mV K-1at aboutT = 10 K is predicted, which is closer to the zero field experimental observation. In the Bloch-Grüneisen regime the temperature dependence ofSxxggives the power-lawSxxg∝Tδe, whereδevaries marginally around 3 and 5 for unscreened and screened couplings, respectively. In addition,Sxxgis smaller for larger electron densityne. The power factor PF is found to increase with temperatureT, decrease withne, and oscillate withB. The prediction of an increase of thermal conductivity with temperature and the magnetic field is responsible for the limit of the figure of merit (ZT). At a particular magnetic field and temperature,ZTcan be maximized by optimizing electron density. By fixingne=1012cm-2, the highestZTis found to be 0.57 atT = 5.8 K andB = 12.1 T. Our findings are compared with those in graphene and MoS2for the zero-magnetic field.

11.
Materials (Basel) ; 12(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480650

RESUMEN

The results of an investigation on tensile stress dependence of mean Seebeck coefficient in Fe-based amorphous ribbons are presented, constituting a new Seebeck-sigma effect. A measurement test stand, capable of the determination of small variations in thermopower in such materials under stress is described. Exemplary results for commercially available, positively magnetostrictive SA1 and 2605CO amorphous ribbons show significant stress dependence with more than 1% of relative change, in contrast to negatively magnetostrictive 6030D alloys with 0.1% change. Non-ferromagnetic alloys are tested for comparison purposes, giving negligible results. Thus, the possibility of a magnetomechanical mechanism of the stress influence is proposed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda