Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555256

RESUMEN

Biologically active taxanes, present in small- to medium-sized evergreen conifers of various Taxus species, are widely used for their antioxidant, antimicrobial and anti-inflammatory effects, but mostly for their antitumour effects used in the treatment of solid tumours of the breast, ovary, lung, bladder, prostate, oesophagus and melanoma. More of the substances found in Taxus plant extracts have medical potential. Therefore, at the beginning of this review, we describe the methods of isolation, identification and determination of taxanes in different plant parts. One of the most important taxanes is paclitaxel, for which we summarize the pharmacokinetic parameters of its different formulations. We also describe toxicological risks during clinical therapy such as hypersensitivity, neurotoxicity, gastrointestinal, cardiovascular, haematological, skin and renal toxicity and toxicity to the respiratory system. Since the effect of the drug-form PTX is enhanced by various Taxus spp. extracts, we summarize published clinical intoxications and all fatal poisonings for the Taxus baccata plant. This showed that, despite their significant use in anticancer treatment, attention should also be focused on the risk of fatal intoxication due to ingestion of extracts from these plants, which are commonly found in our surroundings.


Asunto(s)
Neoplasias , Taxus , Masculino , Femenino , Humanos , Taxoides/farmacología , Paclitaxel , Extractos Vegetales/farmacología , Neoplasias/tratamiento farmacológico
2.
Arch Anim Nutr ; 75(3): 183-194, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33938331

RESUMEN

The aim of the study was to compare the selenium (Se) status of beef cattle from conventional farms with the status of cattle from organic farms located in western Pomerania and to determine the ratios of Se concentration between soil, forage plants and animals at these locations. The mean total Se (SeT) content in soil was 0.208 mg/kg dry matter (DM) on organic farms and 0.254 mg/kg DM on conventional farms. Animals from conventional farms had significantly (p < 0.05) higher serum Se concentration than those on organic farms. As Se deficiency were classified in 75% of animals from organic farms and in 42% animals from conventional farms. A lack of Se supplementation is associated with a serious risk of deficiency in ruminants, particularly in areas with low Se levels in the soil-plant system. Therefore, more attention should be devoted to increasing the bioavailability of Se for plants by enhancing the physicochemical properties of soil. In addition, the composition of swards for grazing should be adjusted to increase the share of forage plants capable of collecting larger amounts of Se from soil.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Selenio/metabolismo , Suelo/química , Animales , Bovinos/sangre , Agricultura Orgánica , Polonia , Selenio/sangre
3.
Dermatol Ther ; 33(6): e14105, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32735060

RESUMEN

Many traditional Chinese medicine compositions can moisturize the skin and utilize in cosmetics. Using a combination of Chinese Medicine Materials and guided by Traditional Chinese Medicine principles, this study selected Echinacea purpurea to protect the skin barrier, Dendrobium nobile to clear heat and promote fluid production, Sophora flavescens to clear heat for diminished inflammation, and Aloe vera combined Lycium barbarum to nourish yin, to together form a "poly TCM moisturizing formulation." These poly plant extracts were investigated and optimized for the stability, safety, and moisturizing ability. The combination moisturizing effect was determined by measuring the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein. Toxicological analysis included a red blood cell hemolysis test and a 3T3 phototoxicity test. It has been observed that by using polysaccharide yield as the evaluation criterion showed optimal extraction at a material-to-liquid ratio of 1:100, an extraction temperature of 100°C, and an extraction time of 3 hours. Moisturizing effect experiments showed that the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein was significantly increased. Toxicological tests showed that the composition was safe and caused no irritating effects. Based on these results, this poly traditional Chinese medicine moisturizing formulation is safe within moisturizing effects and can be used as a moisturizing raw material in cosmetics.


Asunto(s)
Cosméticos , Medicina Tradicional China , Emolientes , Extractos Vegetales/farmacología , Piel
4.
BMC Ecol ; 19(1): 32, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484520

RESUMEN

BACKGROUND: The grasshopper Oedaleus asiaticus Bey-Bienko (Acrididae: Oedipodinae) is a dominant and economically important pest that is widely distributed across the Mongolian plateau. This herbivore pest causes major damage to the grassland of the Inner Mongolian steppe in China. The population dynamics of herbivore pests is affected by grassland management practices (e.g., mowing and heavy livestock grazing) that alter plant community structures and stoichiometric characteristics. For example, O. asiaticus outbreak is closely associated with plant preference changes caused by nitrogen loss from heavy livestock grazing. However, the manner by which small-scale variation in vegetation affects grasshopper performance and promotes outbreak is poorly characterized. To address this question, we investigated the relationship between small-scale (1 m2) vegetation variability and measures of O. asiaticus performance associated with plant stoichiometric characteristics. RESULTS: We found that food preferences of O. asiaticus varied significantly, but maintained a specific dietary structure for different plant compositions. Notably, small-scale changes in plant community composition significantly affected grasshopper food preference and body size. Partial least-square modeling indicated that plant proportion and biomass affected grasshopper body size and density. We found that this effect differed between sexes. Specifically, female body mass positively correlated with the proportion of Stipa krylovii grass, whereas male mass positively correlated with the proportion of Artemisia frigida grass. Further analyses indicated that grasshopper performance is closely associated with plant stoichiometric traits that might be responsible for the pest's plague. CONCLUSIONS: This study provides valuable information for managing grasshoppers using rational grassland management practices.


Asunto(s)
Saltamontes , Peste , Animales , China , Femenino , Pradera , Masculino , Plantas , Poaceae
5.
Ecol Appl ; 28(1): 177-190, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024180

RESUMEN

In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling.


Asunto(s)
Bosques , Modelos Biológicos , Tecnología de Sensores Remotos , North Carolina
6.
Ecotoxicol Environ Saf ; 161: 763-768, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29957584

RESUMEN

The role of plant composition should be considered during ecological risk assessment of soil petroleum contamination. To evaluate the influences of plant composition on phytotoxicity, petroleum degraders, and petroleum degradation, four treatments were arranged in the present study: unplanted, bristle grass only, alfalfa only, and bristle grass and alfalfa mixed planted in uncontaminated soil or petroleum contaminated soil (w/w, 1.0%). Petroleum contamination inhibited the growth of bristle grass and alfalfa significantly, and alfalfa growth inhibition was significantly alleviated when mixed planted with bristle grass (p < 0.05). MPN analysis indicated that the mixed plant treatment can gather the benefits of two species, and facilitate the development of alkane, total hydrocarbon and PAH degraders in contaminated soil, but not occur in uncontaminated soil. Compared with alfalfa only treatment, the degradation rates for total petroleum hydrocarbons (TPH) and aliphatic fraction were significantly increased in the mixed plant treatment (p < 0.05). However, the degradation of aromatic petroleum fraction was not received substantial improvement in the mixed plant treatment, despite containing an abundant PAH degraders. Overall, mixed plant cultivation had the significant influences on plant growth, microbial community and petroleum degradation in contaminated soils. The study provides valuable insights for vegetation restoration and remediation systems in petroleum contaminated sites of study area.


Asunto(s)
Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Petróleo/metabolismo , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Alcanos/metabolismo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Medicago sativa/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Microbiología del Suelo
7.
Ecol Appl ; 27(8): 2359-2368, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851018

RESUMEN

Million of acres of U.S. wildlands are sprayed with herbicides to control invasive species, but relatively little is known about non-target effects of herbicide use. We combined greenhouse, field, and laboratory experiments involving the invasive forb spotted knapweed (Centaurea stoebe) and native bunchgrasses to assess direct and indirect effects of the forb-specific herbicide picloram on arbuscular mycorrhizal fungi (AMF), which are beneficial soil fungi that colonize most plants. Picloram had no effect on bunchgrass viability and their associated AMF in the greenhouse, but killed spotted knapweed and reduced AMF colonization of a subsequent host grown. Results were similar in the field where AMF abundance in bunchgrass-dominated plots was unaffected by herbicides one year after spraying based on 16:1ω5 phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) concentrations. In spotted-knapweed-dominated plots, however, picloram application shifted dominance from spotted knapweed, a good AMF host, to bulbous bluegrass (Poa bulbosa), a poor AMF host. This coincided with a 63% reduction in soil 16:1ω5 NLFA concentrations but no reduction of 16:1ω5 PLFA. Because 16:1ω5 NLFA quantifies AMF storage lipids and 16:1ω5 PLFA occurs in AMF membrane lipids, we speculate that the herbicide-mediated reduction in host quality reduced fungal carbon storage, but not necessarily fungal abundance after one year in the field. Overall, in greenhouse and field experiments, AMF were only affected when picloram altered host quantity and quality. This apparent lack of direct effect was supported by our in-vitro trial where picloram applied to AMF mycelia did not reduce fungal biomass and viability. We show that the herbicide picloram can have profound, indirect effects on AMF within one year. Depending on herbicide-mediated shifts in host quality, rapid interventions may be necessary post herbicide applications to prevent loss of AMF abundance. Future research should assess consequences of these potential shifts for the restoration of native plants that differ in mycorrhizal dependency.


Asunto(s)
Centaurea/efectos de los fármacos , Herbicidas/efectos adversos , Micorrizas/efectos de los fármacos , Picloram/efectos adversos , Poaceae/efectos de los fármacos , Centaurea/microbiología , Montana , Poaceae/microbiología
8.
Sci Total Environ ; 895: 164967, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343879

RESUMEN

We examine the relationship between soil and plant inorganic chemical composition as a precursor to biomass smoke aerosol particle (PM2.5) properties in desert landscapes of the Southwestern United States. Past work underscored the importance of plant species and in particular the dependence of smoke PM2.5 water uptake on the water-soluble inorganics important in select plant species (e.g., halophytes) versus absent in other species (e.g., conifers). This study extends this work by looking at a range of soil types and salinity in examining native and invasive species in the Desert Southwest US region. Eighteen plant samples and surrounding soils were taken from four ecosystems in New Mexico, USA. Results here support the conclusion that plant species are the primary controller over the inorganic plant composition that is relevant to biomass smoke and controls its hygroscopicity. The role of soil type is secondary to plant inorganic composition but is found to be important on the ecosystem level in determining what plant species are viable in a given ecosystem. This ultimately affects the smoke properties, including PM2.5 hygroscopicity (water uptake), produced in landscape fires. Knowledge of ecosystem features including plant species distribution and soil salinity may be combined as a first-order predictor of PM2.5 hygroscopicity of the primary smoke emissions. This can be particularly useful when combined with knowledge of burn characteristics such as flame temperature, which also plays a key role in determining PM2.5 water uptake response.


Asunto(s)
Ecosistema , Humo , Biomasa , Suelo , Plantas Tolerantes a la Sal , Agua , Iones
9.
Transl Anim Sci ; 7(1): txad129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075937

RESUMEN

A 6-yr experiment was conducted to determine the effects of prescribed-fire season on stocker cattle growth performance and rangeland plant community characteristics in the Kansas Flint Hills. Eighteen pastures were grouped by watershed and each watershed was randomly assigned to 1 of 3 prescribed-fire treatments: spring (11 April ±â€…5.7 d), summer (25 August ±â€…6.2 d), or autumn (2 October ±â€…9.0 d). All burns were applied prior to grazing in years 1, 2, 3, and 5; however, no burns were applied in year 4 because of unfavorable burn conditions. Over 5 consecutive grazing seasons, 1,939 yearling stocker calves (initial BW = 281 ±â€…58.9 kg) were grazed from May to August at a targeted stocking density of 280 kg live-weight + ha-1. Beginning in June of 2018 (pretreatment), a permanent 100-m transect was established in each pasture and was used to determine plant-species composition using a modified step-point method. Forage biomass accumulation and root carbohydrate concentrations of 4 native tallgrass plant species were also measured. All data were analyzed as a completely randomized design using a mixed model. Average daily gain (ADG) was 0.05 to 0.07 kg greater (P = 0.02) for calves grazing spring-burned pastures compared with calves grazing summer- or autumn-burned pastures; however, ADG did not differ (P ≥ 0.55) between calves assigned to the summer or autumn prescribed-fire treatments. Basal cover of all graminoids and all forbs did not differ (P ≥ 0.30) among prescribed-fire treatments; however, basal cover of C3 grasses tended (P = 0.06) to be greater while basal cover of C4 grasses tended (P = 0.08) to be less in autumn-burned pastures compared with spring-burned pastures. Forage biomass accumulation did not differ (P = 0.58) among treatments. In addition, root starch or root water-soluble carbohydrate concentrations in big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), Indiangrass (Sorghastrum nutans), or purple prairieclover (Dalea purpurea) did not differ (P ≥ 0.26) among prescribed-fire treatments. Overall, we interpreted these data to suggest that prescribed-fire timing had small influences on yearling stocker cattle growth performance and rangeland plant composition but did not influence forage biomass accumulation or root carbohydrate concentrations of key native tallgrass plant species in the Kansas Flint Hills.

10.
Front Plant Sci ; 13: 1040377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407621

RESUMEN

Biodiversity is the decisive factor of grassland ecological function and process. As the most important human use of grassland, grazing inevitably affects the grassland biodiversity. However, comprehensive studies of seasonal grazing on plant and soil bacterial, archaeal and fungal diversity of typical temperate grassland are still lacking. We examined the impact of seasonal grazing, including no-grazing (NG), continuous grazing (CG), grazing in May and July (G57), grazing in June and August (G68), and grazing in July and September (G79) on grassland plant and soil microbial diversity based on a long-term field grazing experiment. The results showed that the aboveground plant biomass (AGB) of the seasonal grazing plots was significantly higher than that of the CG plots. Compared with NG, CG increased significantly the Margalef richness index of plant community, while did not significantly change the Shannon, Simpson and Pielou evenness of plant community. Grazing changed the composition and biomass of dominant vegetation. Long-term grazing decreased the proportion of Leymus chinensis (Trin.) Tzvel. and increased the proportion of Cleistogenes squarrosa (Trin.) Keng. There was no significant change in the Shannoneven, Shannon and Coverage indices of soil bacteria, archaea and fungi between NG and the grazing plots. But the Chao index of soil fungi in G57, G68 and G79 and archaea in G57, G79 was significantly higher than that in CG. The results of correlation analysis showed that the plant diversity in the CG plots was significantly negatively correlated with the soil bacterial diversity. The plant richness in the G57 and G68 plots was significantly positively correlated with the soil archaea richness. Our study showed that seasonal grazing was a sustainable grazing management strategy for maintaining typical grassland plant and soil microbial diversity in northern of China.

11.
Transl Anim Sci ; 5(2): txab077, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34632310

RESUMEN

Recent research demonstrated that mid- or late-summer prescribed fires can be employed to manage sericea lespedeza (Lespedeza cuneata) infestations in the Kansas Flint Hills. The effects of prescribed fire applied during the growing season (i.e., August to October) on grazing performance of yearling cattle have not been evaluated. Native pastures (n = 18; 22 ± 4.0 ha) were grouped by watershed and assigned randomly to one of three prescribed-fire treatments: spring (7 April ± 2.1 d), summer (21 August ± 5.7 d), or autumn (2 October ± 9.9 d). Yearling beef cattle were grazed from May to August at a targeted stocking density of 280 kg live-weight/ha following prescribed-fire application. Forage biomass accumulations, soil cover, plant species composition, and root carbohydrate concentrations in four native plant species were evaluated. Total body weight (BW) gains and average daily gain were greater (P = 0.01) for cattle that grazed the spring and summer prescribed-fire treatments compared with those that grazed the autumn prescribed-fire treatment. As a result, final BW were greater (P = 0.04) in the spring and summer treatments than the autumn treatment. Conversely, forage biomass accumulations did not differ (P = 0.91) between fire regimes. Proportions of bare soil were greater (P < 0.01) in the spring treatment compared with the summer and autumn treatments, whereas proportions of litter on the soil surface were greater (P < 0.01) in summer- and autumn-burned pastures compared with spring-burned pastures. Total basal cover of graminoids and forbs did not differ (P ≤ 0.15) between prescribed fire treatments. Likewise, total basal cover of C3 or C4 perennial grasses did not differ (P ≥ 0.23) between prescribed-fire treatments. No treatment differences (P = 0.24) in root starch or root water-soluble carbohydrate concentrations in big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), Indiangrass (Sorghastrum nutans), or purple prairieclover (Dalea purpurea) were detected. These data were interpreted to suggest that summer or autumn prescribed fire can be applied without reducing forage biomass accumulations, root carbohydrate concentrations in key native plant species, or considerably altering native plant populations compared with conventional spring-season prescribed fire; however, summer prescribed fire could be favored over spring or autumn prescribed fire both to maintain stocker cattle growth performance and to achieve control over sericea lespedeza.

12.
Transl Anim Sci ; 5(2): txab079, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34189418

RESUMEN

The predominant grazing-management practice of the Kansas Flint Hills involves annual prescribed burning in March or April with postfire grazing by yearling beef cattle at a high stocking density from April to August. There has been a dramatic increase in sericea lespedeza (Lespedeza cuneata [Dumont] G. Don) coincident with this temporally focused use of prescribed fire in the Flint Hills region. The species is an aggressive invader and a statewide noxious weed in Kansas. Control has generally been attempted using repeated herbicide applications. This approach has not limited proliferation of sericea lespedeza and resulted in collateral damage to nontarget flora and fauna. Alternative timing of prescribed fire has not been evaluated for its control. Our objectives for this 4-yr experiment were to (1) document the effects of prescribed burning during early April, early August, or early September on vigor of sericea lespedeza, standing forage biomass, and basal cover of native graminoids, forbs, and shrubs and (2) measure responses to fire regimes by grassland bird and butterfly communities. Whole-plant dry mass, basal cover, and seed production of sericea lespedeza were markedly less (P < 0.01) in areas treated with prescribed fire in August or September compared with April. Forage biomass did not differ (P ≥ 0.43) among treatments when measured during July; moreover, frequencies of bare soil, litter, and total basal plant cover were not different (P ≥ 0.29) among treatments. Combined basal covers of C4 grasses, C3 grasses, annual grasses, forbs, and shrubs also did not differ (P ≥ 0.11) between treatments. Densities of grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern meadowlark (Sturnella magna) were not negatively affected (P > 0.10) by midsummer or late-summer fires relative to early-spring fires. There were no differences (P > 0.10) in densities of grassland-specialist butterfly species across fire regimes. Under the conditions of our experiment, prescribed burning during summer produced no detrimental effects on forage production, desirable nontarget plant species, grassland birds, or butterfly communities but had strong suppressive effects on sericea lespedeza. Additional research is warranted to investigate how to best incorporate late-summer prescribed fire into common grazing-management practices in the Kansas Flint Hills.

13.
Front Microbiol ; 10: 497, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967845

RESUMEN

Arenization occurs in regions that present sandy soils with normal rainfall levels. Predatory use of environmental sources, the dissolution of arenitic rocks and reworking of non-consolidated surface sands intensify this degradation scenario. Thus, this work aimed to evaluate the impact of the arenization process in the Brazilian Pampa Biome and how this phenomenon affects the soil microbial and plant communities. For this purpose, three arenized areas in Southern Brazil (Pampa Biome) were selected and, in each one, three sampling points were studied: arenized (ARA), arenized to grassland transition (AGT), and grassland (GRA) areas. In the three sampling points, soils presented low levels of nutrients, organic matter, mud and pH acidic in all regions but, the presence of vegetation coverage in AGT and GRA areas preserved the topsoil structure. Our study related ARA with bacterial families Alcaligenaceae, Pseudomonadaceae, and Xanthomonadaceae. AGT with bacterial families Bacillaceae and Burkholderiaceae, and plant species Melinis repens (Willd.) Zizka and Paspalum stellatum Humb. and Bonpl. ex Flüggé, and GRA with bacterial families Koribacteraceae, Hyphomicrobiaceae, and Chthoniobacteraceae, and plant species Croton subpannosus Müll.Arg. ex Griseb., Piptochaetium montevidense (Spreng.) Parodi and Elyonurus sp. The three studied areas (as well as sampling points) present soils extremely poor in nutrients with sandy texture, and the bacterial and plant composition well known to be resistant to environmental stresses were dominant. The vulnerability of these areas causes a degradation scenario, which is worsened by agricultural activities. However, in general, this phenomenon is a natural process that occurs mainly due to soil characteristics (poor soils) and climatic variations.

14.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3559-3568, 2018 Nov.
Artículo en Zh | MEDLINE | ID: mdl-30460802

RESUMEN

To understand the usages of available resource by dominant plants, their niches and the mechanisms of inter-specific competition and co-existence in the water level fluctuation zone, we studied the spatial distributions and niche characteristics of existing dominant herbaceous species at a typical water-level-fluctuation site of the Three Gorges Reservoir Area, Zigui. The results showed that there were 39 herb species in total, which belonged to 18 families and 32 genera. Gramineae, Compositae, Polygonaceae and Euphorbiaceae were the dominant families. Cynodon dactylon, Setaria viridis, Bidentis tripartitae and Digitaria chrysoblephara were the dominant species, with high importance value and niche breadth. In addition, at 145-155 m, 155-165 m and 165-175 m altitude section, the three major species, expressing the highest ecological niche breadth, which were in order of C. dactylon > Polygonum lapathifolium > S. viridis, S. viridis > D. chrysoblephara > C. dactylon, and S. viridis > B. tripartitae > P. orientale, respectively. The niche overlap of the species between the different altitudes zone was relatively high. The species which had a broad niche could co-exist with those occupying narrow niche. The niche overlap could not be determined by niche breadth lonely. Furthermore, after seven times of water level fluctuations, most of the species were annual herbs, and the degree of niche differentiation was low in the area. Due to scarce resources and unstable habitats, the inter-specific competition was strong, and the vegetation was at the primary successional stage.


Asunto(s)
Ecosistema , Plantas , Organismos Acuáticos , Asteraceae , China , Ambiente , Agua
15.
Sci Total Environ ; 601-602: 247-259, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28554116

RESUMEN

Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment at a wide range of scales, which could help better address further biomic impacts of environmental change.

16.
Wetl Ecol Manag ; 26: 315-329, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36204421

RESUMEN

Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low marsh, high marsh, and palustrine tidal marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in palustrine and high marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.

17.
PeerJ ; 5: e3552, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785514

RESUMEN

Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.

18.
Ecol Evol ; 2(10): 2460-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23145332

RESUMEN

Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a "low plant diversity - high mollusk abundance" trajectory.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda