Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459738

RESUMEN

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Genotipaje/métodos , Cartilla de ADN/genética , Sitios de Carácter Cuantitativo/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeo Cromosómico , ADN de Plantas/genética , Glycine max/genética , Biblioteca de Genes , Polimorfismo Genético , Productos Agrícolas/genética , Genotipo
2.
Small ; 20(10): e2303966, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37907423

RESUMEN

Multispectral/hyperspectral technologies can easily detect man-made objects in vegetation by subtle spectral differences between the object and vegetation, and powerful reconnaissance increases the demand for camouflage materials closely resembling vegetation spectra. However, previous biomimetic materials have only presented static colors that cannot change color, and camouflage in multiple bands is difficult to achieve. To address this challenge, inspiration is drawn from the color change of foliage, and a color-change model is proposed with active and static pigments embedded in a matrix medium. The color of a composite material is dominated by the colored active pigment, which conceals the color of the static pigments and the color is revealed when the active pigment fades. A color-changing biomimetic material (CCBM) is developed with a solution casting method by adopting microcapsuled thermochromic pigments and chrome titanate yellow pigments as fillers in a base film with polyvinyl alcohol and lithium chloride. A Kubelka-Munk four-flux model is constructed to optimize the component proportions of the CCBM. The material has a reversible color change, closely resembles the foliage spectrum in UV-vis-NIR ranges, and imitates the thermal behavior of natural foliage in the mid-infrared regime. These results provide a novel approach to multispectral and hyperspectral camouflage.

3.
Plant Cell Environ ; 47(7): 2597-2613, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549236

RESUMEN

Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.


Asunto(s)
Cloroplastos , Citocininas , Giberelinas , Luz , Oryza , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Oryza/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Citocininas/metabolismo , Citocininas/farmacología , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Cloroplastos/metabolismo , Forma de la Célula/efectos de la radiación , Factores de Tiempo , Tamaño de la Célula/efectos de la radiación
4.
Plant Cell Environ ; 47(5): 1471-1485, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38235913

RESUMEN

Photosynthesis under oblique illumination has not been studied extensively despite being the prevailing light regime under natural conditions. We studied how photosynthetic rate (An) is affected by the geometrical arrangement between leaf lamina and light rays, in conjunction with key anatomical features; studied plant species selected based on the absence (homobaric) or the occurrence of bundle sheath extensions (BSEs; heterobaric) and the arrangement of these structures, that is, parallel (monocots) or reticulated (dicots). The direction of light ray affected leaf absorptance (Abs) and An; both were maximal when the angle of incidence of light on leaf surface (polar angle, θ) was 90°. For any lower θ, both Abs and An were higher when the angle between the leaf axis and the light rays (azimuthal angle, φ) was zero. The dependence of Abs and An from φ was only evident in monocots and, especially, in heterobaric compared to homobaric leaves. In some species, An was substantially higher than predicted from calculated photon flux density of oblique light. The occurrence of BSEs, especially in monocots, significantly alters leaf optical properties, resulting in more efficient photosynthesis under oblique illumination conditions.


Asunto(s)
Magnoliopsida , Fotosíntesis , Hojas de la Planta/anatomía & histología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38832855

RESUMEN

During a study on the diversity of culturable actinobacteria from coastal halophytes in Thailand, strain LSe6-5T was isolated from leaves of sea purslane (Sesuvium portulacastrum L.), and a polyphasic approach was employed to determine its taxonomic position. The 16S rRNA gene sequences analysis indicated that the strain was most closely related to Klenkia brasiliensis Tu 6233T (99.2 %), Klenkia marina YIM M13156T (99.1 %), and Klenkia terrae PB261T (98.7 %). The genome of strain LSe6-5T was estimated to be 4.33 Mbp in size, with DNA G+C contents of 74.3%. A phylogenomic tree based on whole-genome sequences revealed that strain LSe6-5T formed a clade with Klenkia marina DSM 45722T, indicating their close relationship. However, the average nucleotide identity (ANI)-blast, ANI-MUMmer, and dDDH values between strain LSe6-5T with K. marina DSM 45722T (87.1, 88.9, and 33.0 %) were below the thresholds of 95-96 % ANI and 70 % dDDH for identifying a novel species. Furthermore, strain LSe6-5T showed morphological and chemotaxonomic characteristics of the genus Klenkia. Cells were motile, rod-shaped, and Gram-stain-positive. Optimal growth of strain LSe6-5T occurred at 28 °C, pH 7.0, and 0-3 % NaCl. The whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid, with galactose, glucose, mannose, and ribose as whole-cell sugars. The predominant menaquinones were MK-9(H4) and MK-9(H0). The polar lipid profile was composed of diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified phospholipid, and an unidentified lipid. Major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, and iso-C17 : 0. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, it is supported that strain LSe6-5T represents a novel species of the genus Klenkia, for which the name Klenkia sesuvii sp. nov. is proposed. The type strain is strain LSe6-5T (=TBRC 16417T= NBRC 115929T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , Hojas de la Planta , ARN Ribosómico 16S , Plantas Tolerantes a la Sal , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Hojas de la Planta/microbiología , Tailandia , Plantas Tolerantes a la Sal/microbiología , ADN Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfolípidos/análisis , Secuenciación Completa del Genoma , Genoma Bacteriano
6.
Artículo en Inglés | MEDLINE | ID: mdl-35617012

RESUMEN

Two strains representing a novel yeast species were isolated from plant leaves collected in the Baotianman Nature Reserve in Henan Province, central China. Phylogenetic analysis based on the concatenated sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and the D1/D2 domain of the large subunit rRNA gene revealed that the novel species belonged to the genus Hyphopichia, although the formation of ascospores was not observed. The novel species was related most closely to Hyphopichia paragotoi CBS 13913T but they differed by 0.9 % sequence divergence (five substitutions) in the D1/D2 domain and by 3.7 % sequence divergence (seven substitutions and eight gaps) in the ITS region. Furthermore, the novel species can also be differentiated from the closely related species in some biochemical and physiological characteristics. The species name of Hyphopichia xiaguanensis f.a., sp. nov. (Holotype CBS 16668, Mycobank MB 842425) is proposed to accommodate strains NYNU 20899T and NYNU 20914.


Asunto(s)
Ácidos Grasos , Saccharomycetales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Ácidos Grasos/química , Técnicas de Tipificación Micológica , Filogenia , Hojas de la Planta , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293359

RESUMEN

Salt stress will have a serious inhibitory effect on various metabolic processes of plant cells, this will lead to the excessive accumulation of reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a type of ROS that can severely damage plant cells in large amounts. Existing methods for assessing the content of H2O2 released from leaves under salt stress will cause irreversible damage to plant leaves and are unable to detect H2O2 production in real time. In this study, on the strength of a series of physiological indicators to verify the occurrence of salt stress, an electrochemical sensor for the detection of H2O2 released from leaves under salt stress was constructed. The sensor was prepared by using multi-walled carbon nanotube-titanium carbide-palladium (MWCNT-Ti3C2Tx-Pd) nanocomposite as substrate material and showed a linear response to H2O2 detection in the range 0.05-18 mM with a detection limit of 3.83 µM. Moreover, we measured the determination of H2O2 released from Arabidopsis leaves at different times of salt stress by the sensor, which was consistent with conventional method. This study demonstrates that electrochemical sensing is a desirable technology for the dynamic determination of H2O2 released by leaves and the assessment of salt stress to plants.


Asunto(s)
Arabidopsis , Nanotubos de Carbono , Peróxido de Hidrógeno/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/análisis , Nanotubos de Carbono/química , Paladio , Hojas de la Planta/metabolismo , Estrés Salino , Técnicas Electroquímicas
8.
Int J Phytoremediation ; 21(4): 334-351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30648399

RESUMEN

To provide more insight into the removal ability of urban air dust and associated metals by plant leaves, and thus guide urban green planning to improve air quality, 15 plant species leaves collected from Beijing roadside were analyzed for size fractions of leaf surface dust (SD) and inner wax dust (WD). Seven associated metals Cd, Cr, Cu, Fe, Mn, Pb and Zn were also measured. Metal Accumulation Index (MAI) was calculated for different species leaves at various dust sizes and soluble forms, respectively. Cluster analysis was used for the plant species and correlations between dust and metal concentrations and for inter-metal concentrations were calculated for both surface and inner wax dust. Mean leaf total dust TD (SD + WD), SD and WD were measured as 1159, 817 and 342 mg m-2, respectively, with the highest values observed all in Euonymus japonicus. Most species leaves collected larger ratios of SD than WD except Salix babylonica and Robinia pseudoacacia. While SD was presented at all particle size fractions for all plants, nearly all species leaves collected higher proportions of WD >10 µm. Mean metal levels of leaf TD of all species ranged from high to low as Fe > Cr > Zn > Pb > Cu > Mn > Cd, but with different orders for individual species. Metals were observed in all sizes of SD/WD, although the size distributions were various for certain metals. Intercorrelations of metal concentrations in leaf SD/WD were positively significant except Pb, which may have different emission sources. Species Prunus cerasifera f. atropurpurea, Syringa oblata, Malus micromalu, Koelreuteria paniculata and Robinia pseudoacacia may possess better overall metal collection ability due to their relatively higher MAI values, but species Euonymus japonicus, Malus micromalu, Ligustrum x vicaryi and Koelreuteria paniculata were identified as the best choices in removing air dust based on cluster analysis and suggested to be planted at heavy trafficked road site for air quality improvement.


Asunto(s)
Polvo , Metales Pesados/análisis , Beijing , Biodegradación Ambiental , Monitoreo del Ambiente , Hojas de la Planta/química
9.
Antonie Van Leeuwenhoek ; 111(1): 155-160, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28871444

RESUMEN

Two strains, GT-165T and GT-261, isolated from plant leaves collected from Gutian Mountain in Zhejiang province in China were identified as a novel species of the genus Kondoa by the sequence analysis of the internal transcribed spacer (ITS) region, the D1/D2 domains of the large subunit of rRNA (LSU rRNA) and the RNA polymerase II second largest subunit (RPB2), complemented by physiological tests. Phylogenetic analysis based on the concatenated sequences of ITS, D1/D2 and RPB2 showed that the closest known relatives of the new species are three undescribed Kondoa species and Kondoa thailandica. The ITS and D1/D2 sequences of the new species differ from the closely related species by 11-22% and 2-9%, respectively. The name Kondoa gutianensis f.a. sp. nov. (MB 820648, holotype = CGMCC 2.5703T; isotype: CBS 14811T = CGMCC 2.5703T) is proposed to accommodate the new taxon.


Asunto(s)
Basidiomycota/clasificación , Microbiología Ambiental , Hojas de la Planta/microbiología , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , ADN Espaciador Ribosómico , Genes de ARNr , Técnicas de Tipificación Micológica , Filogenia
10.
Ecotoxicol Environ Saf ; 147: 64-71, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28837871

RESUMEN

The present work reports the preparation of activated carbon fibers (ACFs) from pineapple plant leaves, and its application on caffeine (CFN) removal from aqueous solution. The preparation procedure was carried out using the H3PO4 as activating agent and slow pyrolysis under N2 atmosphere. The characterization of materials was performed from the N2 adsorption and desorption isotherms, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Boehm titration and pHpzc method. ACFs showed high BET surface area value (SBET = 1031m2 g-1), well-developed mesoporous structure (mesopore volume of 1.27cm³ g-1) and pores with average diameter (DM) of 5.87nm. Additionally, ACFs showed features of fibrous material with predominance of acid groups on its surface. Adsorption studies indicated that the pseudo-second order kinetic and Langmuir isotherm models were that best fitted to the experimental data. The monolayer adsorption capacity was found to be 155.50mgg-1. thermodynamic studies revealed that adsorption process is spontaneous, exothermic and occurs preferably via physisorption. The pineapple leaves are an efficient precursor for preparation of ACFs, which were successful applied as adsorbent material for removal of caffeine from the aqueous solutions.


Asunto(s)
Ananas/química , Cafeína/análisis , Carbono/química , Hojas de la Planta/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Brasil , Fibra de Carbono , Carbón Orgánico/química , Cinética , Modelos Teóricos , Termodinámica
11.
Iran J Med Sci ; 42(6): 553-560, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29184263

RESUMEN

BACKGROUND: Diabetes mellitus is considered one of the 5 principal causes of death in the world and is recognized as a global public health issue because of its multifactorial facets affecting essential biochemical processes in the body. This study investigated the antidiabetic and antidyslipidemic activities of the aqueous extract of Cochlospermum planchonii (C. planchonii) leaves in streptozotocin (STZ)-induced diabetic rats. METHODS: Thirty adult female rats (Rattus norvegicus) weighing 153±3.41g were randomized into 6 groups of 5 animals each. STZ-induced diabetic rats were orally administered 50, 100, and 200 mg/kg body weight of the extract, respectively, once a day, and their blood glucose levels as well as variations of diabetes-associated biomarkers including alpha amylase, glucose-6-phosphate dehydrogenase (G6PDH), and lipid profile by the extract were monitored for 21 days. The results were expressed as means±SEMs and compared with repeated measures using SPSS, Data Editor, version 16.0. RESULTS: The aqueous extract of C. planchonii leaves significantly reduced the blood glucose level in a dose-dependent manner, with the highest dose producing a 74.52% reduction after 21 days of administration, which compared significantly (P<0.01) with the control and metformin-treated groups. Similarly, STZ-induced diabetic mediated alterations in the serum lipids were significantly (P<0.01) restored by the extract. In addition, the aqueous extract of C. planchonii leaves significantly attenuated the decrease in the activity of G6PDH and the increase in the activity of α-AMY in the liver of the STZ-induced diabetic rats. CONCLUSIONS: Overall, the aqueous extract of C. planchonii leaves could be used to manage diabetes and other related complications.

12.
Parasitol Res ; 114(12): 4545-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26350377

RESUMEN

To evaluate the anthelmintic effect of Musa spp. leaves, 12 animals were artificially infected with Haemonchus contortus, and another 12 animals were infected with Trichostrongylus colubriformis. Then, both treatment groups were offered 400 g of dried ground banana plant leaves, and the control animals were offered only 1000 g of coast cross hay. During the trials, the animals received weekly physical examinations. The methods used to evaluate the efficiency of this treatment were packed cell volume, total plasma protein and faecal egg counts, and egg hatchability tests were performed on days -2, +3, +6, +9, +13 and +15. Coproculture tests were performed on day -2 to confirm monospecific infections. In the FEC and EHT, a statistically significant difference (0.04, 0.005; p < 0.05) was noted for T. colubriformis. There were no statistically significant differences (p > 0.05) for Haemochus contortus group in all tests. Our results confirmed previous findings suggesting that dried ground banana plant leaves possess anthelmintic activity.


Asunto(s)
Antihelmínticos/administración & dosificación , Hemoncosis/veterinaria , Haemonchus/efectos de los fármacos , Musa/química , Extractos Vegetales/administración & dosificación , Enfermedades de las Ovejas/tratamiento farmacológico , Trichostrongylus/efectos de los fármacos , Animales , Heces , Hemoncosis/tratamiento farmacológico , Hemoncosis/parasitología , Hojas de la Planta/química , Ovinos , Enfermedades de las Ovejas/parasitología , Oveja Doméstica , Tricostrongiliasis/tratamiento farmacológico , Tricostrongiliasis/parasitología , Tricostrongiliasis/veterinaria
13.
Front Plant Sci ; 15: 1335850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571709

RESUMEN

Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.

14.
Sci Total Environ ; 940: 173689, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38825203

RESUMEN

Atmospheric particulate matter (PM) pollution is one of the world's most serious environmental challenges, and it poses a significant threat to environmental quality and human health. Biomagnetic monitoring of PM has great potential to improve spatial resolution and provide alternative indicators for large area measurements, with respect and complementary to standard air quality monitoring stations. In this study, 160 samples of evergreen plant leaves were collected from park green spaces within five different functional areas of Shanghai. Magnetic properties were investigated to understand the extent and nature of particulate pollution and the possible sources, and to assess the suitability of various plant leaves for urban particulate pollution monitoring. The results showed that magnetic particles of the plant leaf-adherent PM were predominantly composed of pseudo-single domain (PSD) and multi-domain (MD) ferrimagnetic particles. Magnolia grandiflora, as a large evergreen arbor with robust PM retention capabilities, proved to be a more suitable candidate for monitoring urban particulate pollution compared to Osmanthus fragrans, a small evergreen arbor, and Aucuba japonica Thunb. var. variegata and Photinia serratifolia, evergreen shrubs. Meanwhile, there were significant differences in the spatial distribution of the magnetic particle content and heavy metal enrichment of the samples, mainly showing regional variations of industrial area > traffic area > commercial area > residential area > clean area. Additionally, the combination with the results of scanning electron microscopy, shows that industrial production (metal smelting, coal burning), transport and other activities are the main sources of particulate pollution. Plant leaves can be used as an effective tool for urban particulate pollution monitoring and assessment of atmospheric particulate pollution characteristics, and the technique provided useful information on particle size, mineralogy and possible sources.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , Monitoreo del Ambiente/métodos , China , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Hojas de la Planta/química
15.
J Med Signals Sens ; 14: 10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993202

RESUMEN

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.

16.
Water Res X ; 24: 100238, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39155948

RESUMEN

Water disinfection by copper vessels has been prevalent over thousands of years. Unfortunately, people are still suffering from the bacterial pollution in drinking water. Here we show that, only through steeping with tiny amounts of common plant leaves, the room-temperature water in copper pots has unexpectedly high antibacterial ability. Remarkably, copper ions released from copper pots into water are in concentrations lower than the WHO safety threshold for drinking water, and have effective antibacterial ability when water contains specific leave components (polyphenols and/or lignin). Our computations show that the key to enhance antibacterial ability is the great increase in the proportion of Cu+ induced by aromatic rings in these leave components, which has been demonstrated by our experiments. The findings may disclose the mystery of copper vessels for water disinfection, and more importantly, provide effective antibacterial applications in industries and daily lives, by safely using copper ions together with biocompatible natural substances.

17.
Probiotics Antimicrob Proteins ; 15(3): 614-629, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34825308

RESUMEN

This aim of the study was to isolate and screen potential probiotics from Dioscorea villosa leaves. The potential isolate Y4 was obtained from the Dioscorea villosa leaves, and its ability to grow in a medium containing high NaCl concentrations (2-10%) indicated its negative hemolytic activity. Furthermore, Y4 demonstrated inhibitory activity against human pathogens, such as Klebsiella pneumonia, Staphylococcus aureus, Citrobacter koseri, and Vibrio cholerae, as well as towards a plant pathogen isolate OR-2 (obtained from Citrus sinensis). Some biologically important functional groups of Y4 metabolites, such as sulfoxide; aliphatic ether; 1, 2, 3-trisubstituted, tertiary alcohol: vinyl ether; aromatic amine; carboxylic acid; nitro compound; alkene mono-substituted; and alcohol, were identified through FTIR analysis. The 16S rRNA sequencing and subsequent phylogenetic tree analysis indicated that Y4 and OR-2 are the closest neighbors to Kocuria flava (GenBank accession no. MT773277) and Pantoea dispersa (GenBank accession no. MT766308), respectively. The potential isolate Y4 was found to exhibit adhesion, auto-aggregation, co-aggregation, and weak biofilm activity. It also exhibited a high level of antimicrobial activity and antibiotic susceptibility. The safety of K. flava Y4 isolate, which is proposed to be a probiotic, was evaluated through acute oral toxicity test and biogenic amine production test. Moreover, the preservation potential of isolate Y4 was assessed through application on fruits under different temperatures. Thus, our results confirmed that Kocuria flava Y4 is a prospective probiotic and could also be used for the preservation of fruits.


Asunto(s)
Dioscorea , Probióticos , Humanos , Dioscorea/genética , Filogenia , ARN Ribosómico 16S/genética , Estudios Prospectivos , Probióticos/farmacología
18.
Sci Total Environ ; 855: 158700, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113807

RESUMEN

In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.


Asunto(s)
Avicennia , Metales Pesados , Rhizophoraceae , Contaminantes Químicos del Agua , Humedales , Ecosistema , Sedimentos Geológicos , Cadmio , Plomo , Monitoreo del Ambiente , Metales Pesados/análisis , Hojas de la Planta/química , Plantas , Contaminantes Químicos del Agua/análisis
19.
Front Microbiol ; 14: 1143156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998405

RESUMEN

The genus Bannoa is a small group of ballistoconidium-forming yeasts in the family Erythrobasidiaceae (Cystobasidiomycetes). Prior to this study, seven species belonging to this genus have been described and published. In this study, phylogenetic analyzes of Bannoa based on the combined sequences of the small ribosomal subunit (SSU) rRNA gene, the internal transcribed spacer (ITS) regions, the D1/D2 domains of the large subunit rRNA gene (LSU) and the translation elongation factor 1-α gene (TEF1-α) were conducted. Three new species, namely B. ellipsoidea, B. foliicola, and B. pseudofoliicola, were delimited and proposed based on morphological and molecular evidence. B. ellipsoidea was found to be closely related to the type strains of B. guamensis, B. hahajimensis, and B. tropicalis, but with 0.7-0.9% divergence (4-5 substitutions) in the LSU D1/D2 domains and 3.7-4.1% divergence (19-23 substitutions and one-two gaps) in the ITS regions. B. foliicola was found to belong to the same clade as B. pseudofoliicola from which it differed by 0.4% divergence (two substitutions) in the LSU D1/D2 domains and 2.3% divergence (13 substitutions) in the ITS regions. The distinguishing morphological characteristics of the three new species, with respect to closely related taxa, are discussed. The identification of these new taxa significantly increases the number of Bannoa that have been described on the surface of plant leaves. Additionally, a key for the identification of Bannoa species is provided.

20.
Toxicol Rep ; 10: 269-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876028

RESUMEN

Some therapeutic and beneficial health properties of the Theobroma cacao leaf have been documented. This study evaluated the ameliorative effect of Theobroma cacao-fortified feed against potassium bromate-induced oxidative damage in male Wistar rats. Thirty rats were randomly grouped into A-E. Except for E (the negative control), the rats in the other groups were administered 0.5 ml of 10 mg/kg body weight of potassium bromate daily using oral gavage and then allowed access to feed and water ad libitum. Groups B, C, and D were fed with 10 %, 20 %, and 30 % leaf-fortified feed respectively, while the negative and positive control (A) was fed with commercial feed. The treatment was carried out consecutively for fourteen days. In the liver and kidney, there was a significant increase (p < 0.05) in total protein concentration, a significant decrease (P < 0.05) in MDA level, and SOD activity in the fortified feed group compared to the positive control. Furthermore, in the serum, there was a significant increase (p < 0.05) in the albumin concentration, and ALT activity, and a significant decrease (p < 0.05) in urea concentration in the fortified feed groups compared to the positive control. The histopathology of the liver and kidney in the treated groups showed moderate cell degeneration compared to the positive control group. Antioxidant activity due to the presence of flavonoids and metal chelating activity of fiber in Theobroma cacao leaf could be responsible for the ameliorative effect of the fortified feed against potassium bromate-induced oxidative damage.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda