Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263015

RESUMEN

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Asunto(s)
Glioblastoma , Animales , Humanos , Ratones , Acuaporina 4 , Astrocitos , Biomarcadores , Plectina , Isoformas de Proteínas
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 60-66, 2024 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-38322534

RESUMEN

Objective: To explore the relationship between the expression of plectin and the migration of hepatocellular carcinoma (HCC) cells and to elucidate the molecular mechanisms by which plectin expression affects the migration of HCC cells. Methods: First of all, Western blot was performed to determine the expression of plectin in normal hepatocytes and HCC cells. Secondly, a plectin-downregulated HCC cell strain was established and the control group (shNC group) and shPLEC group were set up. Each group was divided into a vehicle control group (shNC+DMSO group or shPLEC+DMSO group) and a F-actin cytoskeleton polymerization inducer Jasplakinolide group (shNC+Jasp group or shPLEC+Jasp group). Western blot was performed to determine the expression of plectin and epithelial-mesenchymal transition (EMT)-related proteins, including N-cadherin, vimentin, and E-cadherin. HCC cell migration was evaluated by Transwell assay. KEGG (Kyoto Encyclopedia of Genes and Genomes) was used to analyze the signaling pathways related to plectin gene. The polymerization of F-actin was analyzed by immunofluorescence assay. Results: Compared with the normal hepatocytes, HCC cells showed high expression of plectin. Compared with those in the shNC group, the expression of plectin in the shPLEC group was decreased (P<0.05), the migration ability of HCC cells was weakened (P<0.05), and the EMT process was inhibited (with the expression of N-cadherin and vimentin being decreased and the expression of E-cadherin being increased) (P<0.05). KEGG analysis showed that the regulation of cytoskeletal F-actin was most closely associated with plectin and cytoskeletal F-actin depolymerized in the shPLEC group. After treatment with Jasplakinolide, an inducer of F-actin cytoskeleton polymerization, the migration ability of HCC cells in the shPLEC+Jasp group was enhanced compared with that of shPLEC+DMSO group (P<0.05) and the EMT process was restored (with the expression of N-cadherin and vimentin being increased and the expression of E-cadherin being decreased) (P<0.05). In addition, the polymerization of cytoskeletal F-actin in HCC cells was also restored. Conclusion: Plectin is highly expressed in HCC cells. Plectin promotes the migration and the EMT of HCC cells through inducing F-actin polymerization.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Plectina , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Actinas/metabolismo , Cadherinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Dimetilsulfóxido , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Plectina/genética , Plectina/metabolismo , Polimerizacion , Vimentina/metabolismo
3.
Angew Chem Int Ed Engl ; 63(26): e202318485, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38608197

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.


Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos con 1 Anillo , Neoplasias Pancreáticas , Plectina , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Plectina/metabolismo , Animales , Medios de Contraste/química , Ratones , Compuestos Heterocíclicos con 1 Anillo/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Imagen Óptica
4.
Eur J Cell Biol ; 103(2): 151403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503131

RESUMEN

Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.


Asunto(s)
Actinas , Vimentina , Vimentina/metabolismo , Actinas/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Unión Proteica
5.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247853

RESUMEN

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Asunto(s)
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda