Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Sci Technol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031076

RESUMEN

Ice can serve as a significant temporary repository and conveyance mechanism for microplastics (MPs). MPs present in the water column can become entrapped within developing ice formations, subsequently being sequestered and transported by ice floes. With changing temperatures, MPs stored in ice can be released back into the environment, while freezing conditions can alter the properties of MPs, ultimately affecting the fate of MPs in the environment. Freezing of MPs in freshwater ice results in the aggregation of MP particles due to physical compression, leading to an increase in particle size once the MPs are released from the ice. The freezing-induced aggregation enhances buoyancy effects, accelerating the settling/rising velocity of MPs in water. Additionally, freezing can lead to enhanced surface wetting alterations, thus improving the dispersion of hydrophobic MPs. The presence of salt in the water can mitigate the effect of freezing on MPs due to the formation of a brine network within the ice structure, which reduces the pressure on MPs entrapped by ice. In cold regions, numerous MPs undergo freezing and thawing, re-entering the water column.

2.
Environ Sci Technol ; 57(17): 6799-6807, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083047

RESUMEN

Plastic pollution has become ubiquitous with very high quantities detected even in ecosystems as remote as Arctic sea ice and deep-sea sediments. Ice algae growing underneath sea ice are released upon melting and can form fast-sinking aggregates. In this pilot study, we sampled and analyzed the ice algaeMelosira arcticaand ambient sea water from three locations in the Fram Strait to assess their microplastic content and potential as a temporary sink and pathway to the deep seafloor. Analysis by µ-Raman and fluorescence microscopy detected microplastics (≥2.2 µm) in all samples at concentrations ranging from 1.3 to 5.7 × 104 microplastics (MP) m-3 in ice algae and from 1.4 to 4.5 × 103 MP m-3 in sea water, indicating magnitude higher concentrations in algae. On average, 94% of the total microplastic particles were identified as 10 µm or smaller in size and comprised 16 polymer types without a clear dominance. The high concentrations of microplastics found in our pilot study suggest thatM. arctica could trap microplastics from melting ice and ambient sea water. The algae appear to be a temporary sink and could act as a key vector to food webs near the sea surface and on the deep seafloor, to which its fast-sinking aggregates could facilitate an important mechanism of transport.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Cadena Alimentaria , Ecosistema , Cubierta de Hielo , Proyectos Piloto , Regiones Árticas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108829

RESUMEN

Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Regiones Antárticas , Filogenia , Pseudomonas/genética , Genoma Viral
4.
Environ Res ; 208: 112741, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063429

RESUMEN

It has been established that various anthropogenic contaminants have already reached all the world's pristine locations, including the polar regions. While some of those contaminants, such as lead and soot, are decreasing in the environment, thanks to international regulations, other novel contaminants emerge. Plastic pollution has been shown as a durable novel pollutant, and, since recently, smaller and smaller plastics particles have been identified in various environments (air, water and soil). Considerable research already exists measuring the plastics in the 5 mm to micrometre size range (microplastics). However, far less is known about the plastics debris that fragmented to the sub-micrometre size (nanoplastics). As these small particles are light, it is expected that they have already reached the most remote places on Earth, e.g. transported across the globe by air movement. In this work, we used a novel method based on Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry (TD-PTR-MS) to detect and measure nanoplastics of different types in the water sampled from a Greenland firn core (T2015-A5) and a sea ice core from Antarctica. We identify polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), and Tire wear nanoparticles in the 14 m deep Greenland firn core and PE, PP and PET in sea ice from Antarctica. Nanoplastics mass concentrations were on average 13.2 ng/mL for Greenland firn samples and 52.3 ng/mL for Antarctic sea ice. We further discuss the possible sources of nanoplastics that we found at these remote locations, which likely involve complex processes of plastic circulation (emission from both land and sea surface, atmospheric and marine circulation).


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Cubierta de Hielo , Plásticos/análisis , Poliestirenos , Contaminantes Químicos del Agua/análisis
5.
Genomics ; 113(1 Pt 2): 1272-1276, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161088

RESUMEN

The present study attempts to investigate the microbial communities and their potential to oxidize ammonia and sulfur at different sites of Arctic Fjord by targeted metagenomics. The high throughput sequencing revealed archaeal Thaumarchaeota (79.3%), Crenarchaeota (10.9%), Euryarchaeota (5.4%), and Woesearchaeota (2.9%) across different depths. In contrast, the bacterial communities depict predominance of Proteobacteria (52.6%), which comprises of dominant genera viz. Sulfurovum (11.2%) and Sulfurimonas (6.3%). Characterizing the metabolic potential of microbial communities with prime focus on the ammonia and sulfur cycling revealed the presence of amoABC and narGHYZ/ nxrAB genes encoding key enzymes. The ammonia cycling coupled with an augmentation of members of Nitrosopumilus belonging to the phylum Thaumarcheaota suggests the vital role of archaeal communities. Similarly, the persistence of chemolithoautotrophic members of Sulfurovum and Sulfurimonas along with the anaerobic genera Desulfocapsa and Desulfobulbus harboring SOX (sulfur-oxidation) system indicates the modulatory role of bacterial communities in sulfur cycling.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Cambio Climático , Azufre/metabolismo , Archaea/genética , Regiones Árticas , Bacterias/genética , Microbiota , Oxidación-Reducción
6.
Glob Chang Biol ; 27(10): 2128-2143, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33605011

RESUMEN

In recent decades, the central Arctic Ocean has been experiencing dramatic decline in sea ice coverage, thickness and extent, which is expected to have a tremendous impact on all levels of Arctic marine life. Here, we analyze the regional and temporal changes in pan-Arctic distribution and population structure of the key zooplankton species Calanus glacialis and C. hyperboreus in relation to recent changes in ice conditions, based on historical (1993-1998) and recent (2007-2016) zooplankton collections and satellite-based sea ice observations. We found strong correlations between Calanus abundance/population structure and a number of sea ice parameters. These relationships were particularly strong for C. glacialis, with higher numbers being observed at locations with a lower ice concentration, a shorter distance to the ice edge, and more days of open water. Interestingly, early stages of C. hyperboreus followed the same trends, suggesting that these two species substantially overlap in their core distribution area in the Arctic Ocean. Calanus glacialis and C. hyperboreus have been historically classified as shelf versus basin species, yet we conclude that both species can inhabit a wide range of bottom depths and their distribution in the Arctic Ocean is largely shaped by sea ice dynamics. Our data suggest that the core distribution patterns of these key zooplankton are shifting northwards with retreating sea ice and changing climate conditions.


Asunto(s)
Copépodos , Cubierta de Hielo , Animales , Regiones Árticas , Océanos y Mares , Zooplancton
7.
Proc Natl Acad Sci U S A ; 115(36): 8907-8912, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30126996

RESUMEN

Water ice may be allowed to accumulate in permanently shaded regions on airless bodies in the inner solar system such as Mercury, the Moon, and Ceres [Watson K, et al. (1961) J Geophys Res 66:3033-3045]. Unlike Mercury and Ceres, direct evidence for water ice exposed at the lunar surface has remained elusive. We utilize indirect lighting in regions of permanent shadow to report the detection of diagnostic near-infrared absorption features of water ice in reflectance spectra acquired by the Moon Mineralogy Mapper [M (3)] instrument. Several thousand M (3) pixels (∼280 × 280 m) with signatures of water ice at the optical surface (depth of less than a few millimeters) are identified within 20° latitude of both poles, including locations where independent measurements have suggested that water ice may be present. Most ice locations detected in M (3) data also exhibit lunar orbiter laser altimeter reflectance values and Lyman Alpha Mapping Project instrument UV ratio values consistent with the presence of water ice and also exhibit annual maximum temperatures below 110 K. However, only ∼3.5% of cold traps exhibit ice exposures. Spectral modeling shows that some ice-bearing pixels may contain ∼30 wt % ice that is intimately mixed with dry regolith. The patchy distribution and low abundance of lunar surface-exposed water ice might be associated with the true polar wander and impact gardening. The observation of spectral features of H2O confirms that water ice is trapped and accumulates in permanently shadowed regions of the Moon, and in some locations, it is exposed at the modern optical surface.

8.
Environ Monit Assess ; 193(11): 724, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34648070

RESUMEN

Global environmental changes not only contribute to the modification of global pollution transport pathways but can also alter contaminant fate within the Arctic. Recent reports underline the importance of secondary sources of pollution, e.g. melting glaciers, thawing permafrost or increased riverine run-off. This article reviews reports on the European Arctic-we concentrate on the Svalbard region-and environmental contamination by inorganic pollutants (heavy metals and artificial radionuclides), including their transport pathways, their fate in the Arctic environment and the concentrations of individual elements in the ecosystem. This review presents in detail the secondary contaminant sources and tries to identify knowledge gaps, as well as indicate needs for further research. Concentrations of heavy metals and radionuclides in Svalbard have been studied, in various environmental elements since the beginning of the twentieth century. In the last 5 years, the highest concentrations of Cd (13 mg kg-1) and As (28 mg kg-1) were recorded for organic-rich soils, while levels of Pb (99 mg kg-1), Hg (1 mg kg-1), Zn (496 mg kg-1) and Cu (688 mg kg-1) were recorded for marine sediments. Increased heavy metal concentrations were also recorded in some flora and fauna species. For radionuclides in the last 5 years, the highest concentrations of 137Cs (4500 Bq kg-1), 238Pu (2 Bq kg-1) and 239 + 240Pu (43 Bq kg-1) were recorded for cryoconites, and the highest concentration of 241Am (570 Bq kg-1) was recorded in surface sediments. However, no contamination of flora and fauna with radionuclides was observed.


Asunto(s)
Ecosistema , Metales Pesados , Regiones Árticas , Monitoreo del Ambiente , Cubierta de Hielo , Metales Pesados/análisis , Svalbard
9.
Microb Ecol ; 80(3): 559-572, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32488483

RESUMEN

Diatoms (Bacillariophyceae) are important primary producers in a wide range of hydro-terrestrial habitats in polar regions that are characterized by many extreme environmental conditions. Nevertheless, how they survive periods of drought and/or freeze remains unknown. A general strategy of microorganisms to overcome adverse conditions is dormancy, but morphologically distinct diatom resting stages are rare. This study aimed to evaluate the annual cycle of freshwater diatoms in the High Arctic (Central Spitsbergen) and provide an insight into their physiological cell status variability. The diversity and viability of diatom cells were studied in samples collected five times at four study sites, tracing the key events for survival (summer vegetative season, autumn dry-freezing, winter freezing, spring melting, summer vegetative season [again]). For viability evaluation, a multiparameter fluorescent staining was used in combination with light microscopy and allowed to reveal the physiological status at a single-cell level. The proportions of the cell categories were seasonally and locality dependent. The results suggested that a significant portion of vegetative cells survive winter and provide an inoculum for the following vegetative season. The ice thickness significantly influenced spring survival. The thicker the ice layer was, the more dead cells and fewer other stages were observed. The influence of the average week max-min temperature differences in autumn and winter was not proven.


Asunto(s)
Diatomeas/fisiología , Rasgos de la Historia de Vida , Regiones Árticas , Agua Dulce , Estaciones del Año , Coloración y Etiquetado , Svalbard
10.
Ecology ; 99(2): 312-321, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315515

RESUMEN

Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna.


Asunto(s)
Cambio Climático , Suelo/química , Animales , Regiones Antárticas , Ecosistema , Microbiología del Suelo
11.
Am J Bot ; 104(11): 1680-1694, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29167157

RESUMEN

Bipolar disjunct distributions are a fascinating biogeographic pattern exhibited by about 30 vascular plants, whose populations reach very high latitudes in the northern and southern hemispheres. In this review, we first propose a new framework for the definition of bipolar disjunctions and then reformulate a list of guiding principles to consider how to study bipolar species. Vicariance and convergent evolution hypotheses have been argued to explain the origin of this fragmented distribution pattern, but we show here that they can be rejected for all bipolar species, except for Carex microglochin. Instead, human introduction and dispersal (either direct or by mountain-hopping)-facilitated by standard and nonstandard vectors-are the most likely explanations for the origin of bipolar plant disjunctions. Successful establishment after dispersal is key for colonization of the disjunct areas and appear to be related to both intrinsic (e.g., self-compatibility) and extrinsic (mutualistic and antagonistic interactions) characteristics. Most studies on plant bipolar disjunctions have been conducted in Carex (Cyperaceae), the genus of vascular plants with the largest number of bipolar species. We found a predominant north-to-south direction of dispersal, with an estimated time of diversification in agreement with major cooling events during the Pliocene and Pleistocene. Bipolar Carex species do not seem to depend on specialized traits for long-distance dispersal and could have dispersed through one or multiple stochastic events, with birds as the most likely dispersal vector.


Asunto(s)
Carex (Planta)/fisiología , Dispersión de las Plantas , Fenómenos Fisiológicos de las Plantas , Plantas , Fenotipo , Haz Vascular de Plantas/fisiología
12.
J Eukaryot Microbiol ; 63(2): 210-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26384711

RESUMEN

A new amoebozoan species, Vermistella arctica n. sp., is described from marine habitats in the central part of Svalbard archipelago. This is the first report on Arctic amoebae belonging to the genus Vermistella Moran and Anderson, 2007, the type species of which was described from the opposite pole of the planet. Psychrophily proved in the new strains qualifies the genus Vermistella as a bipolar taxon. Molecular phylogenetic analyses based on 18S rDNA and actin sequences did not show any affinity of the genus Vermistella to Stygamoeba regulata ATCC(®) 50892(™) strain. A close phylogenetic relationship was found between Vermistella spp. and a sequence originating from an environmental sample from Cariaco basin, the largest marine permanently anoxic system in the world. Possible mechanisms of bipolar distribution are discussed.


Asunto(s)
Amebozoos/clasificación , Amebozoos/aislamiento & purificación , Actinas/genética , Amoeba/genética , Amebozoos/genética , Amebozoos/ultraestructura , Regiones Árticas , Clima Frío , ADN Protozoario/genética , ADN Ribosómico/genética , Lobosea , Microscopía Electrónica de Transmisión , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , Agua de Mar/parasitología , Svalbard
13.
Microb Ecol ; 71(4): 887-900, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841797

RESUMEN

Cyanobacteria form extensive macroscopic mats in shallow freshwater environments in the High Arctic and Antarctic. In these habitats, the communities are exposed to seasonal freezing and desiccation as well as to freeze-thawing and drying-rewetting cycles. Here, we characterized the annual cycles of two Phormidium communities in very shallow seepages located in central Svalbard. We observed the structure of the communities and the morphology, ultrastructure, metabolic activity, and viability of filaments and single cells. The communities overwintered as frozen mats, which were formed by long filaments enclosed in thick multilayered polysaccharide sheaths. No morphologically and/or ultrastructurally distinct spore-like cells were produced for surviving the winter, and the winter survival of the communities was not provided by a few resistant cells, which did not undergo visible morphological and ultrastructural transformations. Instead, a high proportion of cells in samples (85%) remained viable after prolonged freezing. The sheaths were the only morphological adaption, which seemed to protect the trichomes from damage due to freezing and freeze-associated dehydration. The cells in the overwintering communities were not dormant, as all viable cells rapidly resumed respiration after thawing, and their nucleoids were not condensed. During the whole vegetative season, defined by the presence of water in a liquid state, the communities were constantly metabolically active and contained <1% of dead and injured cells. The morphology and ultrastructure of the cells remained unaltered during observations throughout the year, except for light-induced changes in thylakoids. The dissemination events are likely to occur in spring as most of the trichomes were split into short fragments (hormogonia), a substantial proportion of which were released into the environment by gliding out of their sheaths, as well as by cracking and dissolving their sheaths. The short fragments subsequently grew longer and gradually produced new polysaccharide sheaths.


Asunto(s)
Cianobacterias/fisiología , Ecosistema , Agua Dulce/microbiología , Regiones Antárticas , Regiones Árticas , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Congelación , Agua Dulce/química , Viabilidad Microbiana , Estaciones del Año , Svalbard , Temperatura , Microbiología del Agua
14.
Conserv Biol ; 28(6): 1731-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25103277

RESUMEN

The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem-based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high-resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high-resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high-resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high-resolution remote sensing into broad-scale biodiversity and population studies in remote areas, where it can provide much needed detail.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Mamíferos/fisiología , Tecnología de Sensores Remotos/métodos , Spheniscidae/fisiología , Animales , Regiones Antárticas , Cambio Climático , Cadena Alimentaria , Cubierta de Hielo , Océanos y Mares , Dinámica Poblacional
15.
Photochem Photobiol ; 100(2): 491-498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37528525

RESUMEN

Under global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short-term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV-induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV-induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.


Asunto(s)
Diatomeas , Rayos Ultravioleta , Fotosíntesis/efectos de la radiación , Océanos y Mares , Temperatura
16.
Chemosphere ; 353: 141642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442773

RESUMEN

We examined the presence of microplastics in blue mussels Mytilus spp. from the intertidal zone of western Spitsbergen in Arctic Svalbard. The optical microscopy technique detected a total of 148 microplastics, with the highest concentration per mussel being 24 particles. Microplastics were found in 84% of the examined mussels. The microplastics ranged in size from <0.5 mm to 5 mm and consisted of fibers (83%), fragments (13%), plates (3%), and spherules (1%). The micro-Raman spectroscopy technique revealed four different types of polymers: polyethylene (67%), nylon-12 (17%), low-density polyethylene (11%), and polypropylene (5%). Our research shows that Arctic coastal waters are polluted with microplastics notwithstanding their remoteness. These findings suggest that microplastic contamination may harm marine life and coastal ecosystems and require further research into long-term environmental effects. We also indicate that intertidal mussels may be beneficial for monitoring microplastics because they can be collected without involving diving.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/química , Microplásticos , Plásticos , Svalbard , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Mytilus edulis/química
17.
Sci Total Environ ; 912: 169394, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38135091

RESUMEN

Although the fate of PAHs in the three polar regions (Antarctic, Arctic, and Tibetan Plateau) has been investigated, the occurrence and contamination profiles of PAH derivatives such as oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) remain unclear. Some of them are more toxic and can be transformed from PAHs in environment. This study explored and compared the concentrations composition profiles and potential sources of PAHs, OPAHs, and NPAHs in soil and vegetation samples from the three polar regions. The total PAH, OPAH, and NPAH concentrations were 3.55-519, n.d.-101, and n.d.-1.10 ng/g dry weight (dw), respectively. The compounds were dominated by three-ring PAHs, and the most abundant individual PAH and OPAH were phenanthrene (PHE) and 9-fluorenone (9-FO), respectively. The sources of PAHs and their derivatives were qualitatively analyzed by the diagnostic ratios and quantified using the positive matrix factorization (PMF) model. The ratios of PAH derivatives to parent PAHs (9-FO/fluorene and 9,10-anthraquinone/anthracene) were significantly higher in the Antarctic samples than in the Arctic and TP samples, implying a higher occurrence of secondary OPAH and NPAH formation in the Antarctic region. To our knowledge, this is the first comparative study that simultaneously investigated the contamination profiles of PAHs and their derivatives in the three polar regions. The findings of this study provide a scientific basis for the development of risk assessment and pollution control strategies in these fragile regions.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Suelo , Regiones Antárticas , Nitratos , Tibet , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/análisis , China
18.
Sci Total Environ ; 951: 175551, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151623

RESUMEN

Despite being one of the most remote areas on the planet, the Antarctic continent is subject to anthropogenic influences. The presence of various groups of contaminants, including persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), has been documented in the region over the past decades. However, a significant knowledge gap remains regarding the detection of new pollutants, such as emerging contaminants (ECs), in Antarctic coastal environments. This study analyzed the occurrence and levels of selected POPs, PAHs, ECs in surface sediments from Admiralty Bay, Antarctica Peninsula. Non-target screening was employed to identify potential novel contaminants in the region. Samples (n = 17) were extracted using an accelerated solvent extraction (ASE) system and instrumental analyses were performed using gas chromatography coupled to a triple-quadrupole mass spectrometer (GC/MS-MS). Regarding regulated contaminants, concentrations of Σ5PCBs ranged from

19.
Life (Basel) ; 14(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39063628

RESUMEN

Northern pulmonary hypertension (NPH) is a medical condition that is still enigmatic in non-Russian-speaking countries. The extant previous literature is mostly available in the Russian language and, therefore, not accessible to the rest of the world. The recent increased interest in climate changes and environmental effects on pulmonary circulation prompted us to summarize the knowledge from the past about the effects of cold on pulmonary vasculature. In this review, we, for the first time, describe, in detail, the pathological attributes of human NPH, a medical disorder that occurs in people living in extremely cold regions, in the English language. Briefly, NPH is characterized by the hyper-muscularization of the pulmonary arteries and de novo muscularization of the arterioles with the ultimate development of right ventricular hypertrophy. However, the profound molecular mechanisms of the NPH pathology are to be revealed in future comprehensive studies.

20.
Sci Total Environ ; 922: 171156, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417527

RESUMEN

The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17ß-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.


Asunto(s)
Cosméticos , Triclosán , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente , Ecosistema , Svalbard , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Cosméticos/análisis , Medición de Riesgo , Ciprofloxacina/análisis , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda