Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299014

RESUMEN

A novel pomelo peel biochar/MgFe-layered double hydroxide composite (PPBC/MgFe-LDH) was synthesised using a facile coprecipitation approach and applied to remove cadmium ions (Cd (II)). The adsorption isotherm demonstrated that the Cd (II) adsorption by the PPBC/MgFe-LDH composite fit the Langmuir model well, and the adsorption behaviour was a monolayer chemisorption. The maximum adsorption capacity of Cd (II) was determined to be 448.961 (±12.3) mg·g-1 from the Langmuir model, which was close to the actual experimental adsorption capacity 448.302 (±1.41) mg·g-1. The results also demonstrated that the chemical adsorption controlled the rate of reaction in the Cd (II) adsorption process of PPBC/MgFe-LDH. Piecewise fitting of the intra-particle diffusion model revealed multi-linearity during the adsorption process. Through associative characterization analysis, the adsorption mechanism of Cd (II) of PPBC/MgFe-LDH involved (i) hydroxide formation or carbonate precipitation; (ii) an isomorphic substitution of Fe (III) by Cd (II); (iii) surface complexation of Cd (II) by functional groups (-OH); and (iv) electrostatic attraction. The PPBC/MgFe-LDH composite demonstrated great potential for removing Cd (II) from wastewater, with the advantages of facile synthesis and excellent adsorption capacity.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/química , Adsorción , Hidróxidos/química , Agua , Carbón Orgánico/química , Cinética , Contaminantes Químicos del Agua/química
2.
Se Pu ; 40(11): 1031-1038, 2022 Nov.
Artículo en Zh | MEDLINE | ID: mdl-36351812

RESUMEN

Pomelo peel, as a by-product of pomelo consumption, is rich in various fiber and functional compounds. The utilization of the valuable components found in pomelo peel may mitigate environmental concerns. In this study, pomelo peel rich in lignin and oxygen-containing functional groups was used to prepare pomelo peel biochar (PPB) via temperature-programmed pyrolysis at different temperatures (800 ℃ and 1000 ℃). Their structures were investigated by N2 adsorption-desorption isotherms and BJH pore size distribution. The results showed that PPB1000 (pomelo peel biochar prepared at 1000 ℃) had a higher specific surface area (749.9 m2/g), larger pore volume (0.42 cm3/g), more concentrated pore size distribution (2-3 nm), and better adsorption performance than commercial activated carbon. PPB1000 exhibited excellent capability to capture benzenes (BTEX, including benzene (B), toluene (T), ethylbenzene (E), and xylene (X)) through hydrogen bonds, π-π, and electrostatic interactions. Additionally, their honeycomb porous structure could provide additional adsorption sites and material transport paths. PPB1000 was coated on iron wire using the sol-gel method to prepare chemically and mechanically stable solid phase microextraction (SPME) fibers. By combining PPB1000-based SPME analysis with gas chromatography-flame ionization detection (GC-FID), an effective method was developed for the extraction and determination of BTEX. The optimized method had low LODs (0.004-0.032 µg/L), wide linear range (1-100 µg/L), and good linear relationship (determination coefficients, r2≥0.9919). The RSDs of the intra-batch (n=6) and inter-batch (n=5) precisions were 1.04%-6.56% and 1.03%-12.42%, respectively. The method validation results showed that PPB1000 had good stability. Compared with the commercial reagent polydimethylsiloxane (7 µm), PPB1000 had a higher extraction efficiency. When applied to the analysis of BTEX in natural water samples, trace levels of ethylbenzene (4.80 µg/L), o-xylene (3. 00 µg/L), and m-xylene and p-xylene (2.46 µg/L) were detected. Recovery tests were performed to validate the reliability of the method, and recoveries were between 75.7% and 117.6%. This effective pretreatment process combined with GC-FID could realize the rapid detection of BTEX and is promising for the analysis of BTEX in complex matrixes in the future.


Asunto(s)
Benceno , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Benceno/análisis , Carbón Orgánico , Ríos/química , Reproducibilidad de los Resultados , Agua/análisis
3.
Sci Total Environ ; 708: 135092, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31806309

RESUMEN

Zirconium oxide-modified pomelo peel biochar (ZrBC) was synthesized for the adsorption of sulfate ion from aqueous solution. Zirconyl chloride octahydrate (ZCO) was used to modify pomelo peel biochar into ZrBC. The optimal dose of ZCO for modification is 0.5 mol/L, at which ZrBC shows the highest adsorption of sulfate ion. The adsorbents were characterized by the field emission scanning electron microscopy, X-ray photoelectron spectroscopy and surface area measurement. The results confirm that the presence of zirconium oxides and hydroxide groups on the ZrBC surface, and ZrBC has a porous structure and a higher specific surface area in comparison with pomelo peel biochar. ZrBC shows good affinity for sulfate ion with a maximum sulfate adsorption capacity of 35.21 mg/g, which is much higher than that of pomelo peel biochar (1.02 mg/g). The adsorption of sulfate on ZrBC is pH dependent, and acidic conditions favor the adsorption. The adsorption can reach near-equilibrium in approximately 120 min. The adsorption kinetics and isotherm follow the pseudo second-order equation and Langmuir adsorption model, respectively. Furthermore, nitrate and fluoride anions exhibit little influence on the adsorption of sulfate by ZrBC, whereas phosphate inhibits the adsorption under the same concentration conditions. ZrBC has the potential to be used for removal of sulfate from aqueous solution.


Asunto(s)
Carbón Orgánico , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Sulfatos , Agua , Contaminantes Químicos del Agua , Circonio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda