Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mar Drugs ; 19(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564140

RESUMEN

Chemical analysis of an M1 agar plate cultivation of a marine fish-gut-derived fungus, Chrysosporium sp. CMB-F214, revealed the known chrysosporazines A-D (11-14) in addition to a suite of very minor aza analogues 1-6. A microbioreactor (MATRIX) cultivation profiling analysis failed to deliver cultivation conditions that significantly improved the yields of 1-6; however, it did reveal that M2 agar cultivation produced the new natural product 15. A precursor-directed biosynthesis strategy adopting supplementation of a CMB-F214 M1 solid agar culture with sodium nicotinate enhanced production of otherwise inaccessible azachrysposorazines A1 (1), A2 (2), B1 (3), C1 (4), C2 (5) and D1 (6), in addition to four new chrysosporazines; chrysosporazines N-P (7-9) and spirochrysosporazine A (10). Structures inclusive of absolute configurations were assigned to 1-15 based on detailed spectroscopic and chemical analyses, and biosynthetic considerations. Non-cytotoxic to human carcinoma cells, azachrysosporazies 1-5 were capable of reversing doxorubicin resistance in P-glycoprotein (P-gp)-overexpressing human colon carcinoma cells (SW620 Ad300), with optimum activity exhibited by the C-2' substituted analogues 3-5.


Asunto(s)
Compuestos Aza/metabolismo , Chrysosporium/metabolismo , Tracto Gastrointestinal/microbiología , Piperazinas/metabolismo , Smegmamorpha/microbiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Australia , Compuestos Aza/química , Compuestos Aza/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Piperazinas/química , Piperazinas/farmacología
2.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361574

RESUMEN

The plant endophyte Chalara sp. is able to biotransform the epigenetic modifier vorinostat to form unique, aniline-containing polyketides named chalanilines. Here, we sought to expand the chemical diversity of chalaniline A-type molecules by changing the aniline moiety in the precursor vorinostat. In total, twenty-three different vorinostat analogs were prepared via two-step synthesis, and nineteen were incorporated by the fungus into polyketides. The highest yielding substrates were selected for large-scale precursor-directed biosynthesis and five novel compounds, including two fluorinated chalanilines, were isolated, purified, and structurally characterized. Structure elucidation relied on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry. All compounds were tested for their bioactivity but were not active in antimicrobial or cell viability assays. Aminofulvene-containing natural products are rare, and this high-yielding, precursor-directed process allows for the diversification of this class of compounds.


Asunto(s)
Compuestos de Anilina , Ascomicetos , Endófitos , Hidrocarburos Fluorados , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Ascomicetos/química , Ascomicetos/metabolismo , Endófitos/química , Endófitos/metabolismo , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/metabolismo
3.
Molecules ; 26(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34443518

RESUMEN

Myxobacteria represent a viable source of chemically diverse and biologically active secondary metabolites. The myxochelins are a well-studied family of catecholate-type siderophores produced by various myxobacterial strains. Here, we report the discovery, isolation, and structure elucidation of three new myxochelins N1-N3 from the terrestrial myxobacterium Corallococcus sp. MCy9049, featuring an unusual nicotinic acid moiety. Precursor-directed biosynthesis (PDB) experiments and total synthesis were performed in order to confirm structures, improve access to pure compounds for bioactivity testing, and to devise a biosynthesis proposal. The combined evaluation of metabolome and genome data covering myxobacteria supports the notion that the new myxochelin congeners reported here are in fact frequent side products of the known myxochelin A biosynthetic pathway in myxobacteria.


Asunto(s)
Productos Biológicos/química , Lisina/análogos & derivados , Myxococcales/química , Niacina/química , Vías Biosintéticas/genética , Genoma Bacteriano/genética , Lisina/química , Metaboloma/genética , Myxococcales/genética , Myxococcales/aislamiento & purificación , Niacina/aislamiento & purificación
4.
Angew Chem Int Ed Engl ; 60(40): 21679-21684, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34314077

RESUMEN

There is a continuous need for novel microbial natural products to fill the drying-up drug development pipeline. Herein, we report myxadazoles from Myxococcus sp. SDU36, a family of novel chimeric small molecules that consist of N-ribityl 5,6-dimethylbenzimidazole and a linear fatty acid chain endowed with an isoxazole ring. The experiments of genome sequencing, gene insertion mutation, isotope labelling, and precursor feeding demonstrated that the fatty acid chain was encoded by a non-canonical PKS/NRPS gene cluster, whereas the origin of N-ribityl 5,6-dimethylbenzimidazole was related to the vitamin B12 metabolism. The convergence of these two distinct biosynthetic pathways through a C-N coupling led to the unique chemical framework of myxadazoles, which is an unprecedented hybridization mode in the paradigm of natural products. Myxadazoles exhibited potent vasculogenesis promotion effect and moderate antithrombotic activity, underscoring their potential usage for the treatment of cardiovascular diseases.


Asunto(s)
Bencimidazoles/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Isoxazoles/uso terapéutico , Animales , Bencimidazoles/química , Fármacos Cardiovasculares/química , Isoxazoles/química , Estructura Molecular , Myxococcus/química , Pez Cebra
5.
Biometals ; 32(3): 395-408, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30701380

RESUMEN

Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.


Asunto(s)
Deferoxamina/metabolismo , Quelantes del Hierro/metabolismo , Streptomyces/química , Deferoxamina/análogos & derivados , Deferoxamina/química , Quelantes del Hierro/química , Estructura Molecular , Streptomyces/metabolismo
6.
J Biol Inorg Chem ; 23(7): 969-982, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946977

RESUMEN

Dihydroxamic acid macrocyclic siderophores comprise four members: putrebactin (putH2), avaroferrin (avaH2), bisucaberin (bisH2), and alcaligin (alcH2). This mini-review collates studies of the chemical biology and coordination chemistry of these macrocycles, with an emphasis on putH2. These Fe(III)-binding macrocycles are produced by selected bacteria to acquire insoluble Fe(III) from the local environment. The macrocycles are optimally pre-configured for Fe(III) binding, as established from the X-ray crystal structure of dinuclear [Fe2(alc)3] at neutral pH. The dimeric macrocycles are biosynthetic products of two endo-hydroxamic acid ligands flanked by one amine group and one carboxylic acid group, which are assembled from 1,4-diaminobutane and/or 1,5-diaminopentane as initial substrates. The biosynthesis of alcH2 includes an additional diamine C-hydroxylation step. Knowledge of putH2 biosynthesis supported the use of precursor-directed biosynthesis to generate unsaturated putH2 analogues by culturing Shewanella putrefaciens in medium supplemented with unsaturated diamine substrates. The X-ray crystal structures of putH2, avaH2 and alcH2 show differences in the relative orientations of the amide and hydroxamic acid functional groups that could prescribe differences in solvation and other biological properties. Functional differences have been borne out in biological studies. Although evolved for Fe(III) acquisition, solution coordination complexes have been characterised between putH2 and oxido-V(IV/V), Mo(VI), or Cr(V). Retrosynthetic analysis of 1:1 complexes of [Fe(put)]+, [Fe(ava)]+, and [Fe(bis)]+ that dominate at pH < 5 led to a forward metal-templated synthesis approach to generate the Fe(III)-loaded macrocycles, with apo-macrocycles furnished upon incubation with EDTA. This mini-review aims to capture the rich chemistry and chemical biology of these seemingly simple compounds.


Asunto(s)
Complejos de Coordinación/metabolismo , Compuestos Férricos/metabolismo , Ácidos Hidroxámicos/metabolismo , Péptidos Cíclicos/metabolismo , Putrescina/análogos & derivados , Succinatos/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Compuestos Férricos/química , Ácidos Hidroxámicos/química , Estructura Molecular , Péptidos Cíclicos/química , Putrescina/química , Putrescina/metabolismo , Succinatos/química
7.
Appl Microbiol Biotechnol ; 102(18): 7865-7875, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30039331

RESUMEN

BC194, a derivative of borrelidin (BN) that features a lower cytotoxicity than that of BN due to an altered starter unit, trans-1,2-cyclobutanedicarboxylic acid (trans-1,2-CBDA), is a potent inhibitor of angiogenesis. However, BC194 production has only been reported to occur via mutasynthesis, which requires tedious, multistep genetic manipulation. In this study, we surveyed several factors contributing to the precursor-directed biosynthesis of BC194 and provided an alternative method for the production of BC194 that is directly applicable to other BN-producing strains. First, the precursor-directed biosynthesis of BC194 by a BN-producing strain, Streptomyces rochei MB037 derived from sponge Dysidea arenaria, was carried out in modified Radix astragali (RA) medium with 5 mM trans-1,2-CBDA. Next, possible inhibitors of BN starter unit trans-1,2-cyclopentanedicarboxylic acid (trans-1,2-CPDA) biosynthesis were investigated. It was found that potassium ferricyanide was a possible inhibitor of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (DHPAO) and capable of suppressing the yield of BN and increasing the BC194 yield by 112.5% (from 5.2 ± 0.76 to 11.9 ± 0.59 mg/L). BC194 yield was further enhanced in the presence of 50 mM trans-1,2-CBDA, reaching 20.2 ± 0.62 mg/L. Furthermore, 3% macroporous adsorbent DA-201 resin was added to the fermentation broth, enabling a further 36.6% increase in BC194 production and reaching 27.59 ± 1.15 mg/L. Moreover, an efficient separation of BC194 with approximately 95% purity was developed by employing high-speed counter-current chromatography (HSCCC), achieving an improved recovery (approximately 93%).


Asunto(s)
Dysidea/microbiología , Microbiología Industrial/métodos , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo , Animales , Distribución en Contracorriente , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/metabolismo , Fermentación , Streptomyces/clasificación , Streptomyces/genética
8.
Appl Microbiol Biotechnol ; 101(13): 5291-5300, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28429060

RESUMEN

Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.


Asunto(s)
Glicosiltransferasas/metabolismo , Isoquinolinas/química , Isoquinolinas/metabolismo , Policétidos/química , Azúcares/química , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Técnicas Químicas Combinatorias , Glicosilación , Isoquinolinas/farmacología , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato
9.
Fungal Genet Biol ; 89: 89-101, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26872866

RESUMEN

Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs.


Asunto(s)
Aspergillus/metabolismo , Productos Biológicos , Hongos/metabolismo , Ingeniería Metabólica/métodos , Aspergillus/genética , Depsipéptidos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Hongos/genética
11.
Methods Enzymol ; 702: 121-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155108

RESUMEN

Siderophores are low-molecular-weight organic bacterial and fungal secondary metabolites that form high affinity complexes with Fe(III). These Fe(III)-siderophore complexes are part of the siderophore-mediated Fe(III) uptake mechanism, which is the most widespread strategy used by microbes to access sufficient iron for growth. Microbial competition for limited iron is met by biosynthetic gene clusters that encode for the biosynthesis of siderophores with variable molecular scaffolds and iron binding motifs. Some classes of siderophores have well understood biosynthetic pathways, which opens opportunities to further expand structural and property diversity using precursor-directed biosynthesis (PDB). PDB involves augmenting culture medium with non-native substrates to compete against native substrates during metabolite assembly. This chapter provides background information and technical details of conducting a PDB experiment towards producing a range of different analogues of the archetypal hydroxamic acid siderophore desferrioxamine B. This includes processes to semi-purify the culture supernatant and the use of liquid chromatography-tandem mass spectrometry for downstream analysis of analogues and groups of constitutional isomers.


Asunto(s)
Sideróforos , Sideróforos/biosíntesis , Sideróforos/química , Sideróforos/metabolismo , Espectrometría de Masas en Tándem/métodos , Deferoxamina/metabolismo , Deferoxamina/química , Cromatografía Liquida/métodos , Vías Biosintéticas , Familia de Multigenes , Hierro/metabolismo , Hierro/química , Medios de Cultivo/química , Medios de Cultivo/metabolismo
12.
J Agric Food Chem ; 72(8): 4063-4073, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364207

RESUMEN

White line-inducing principle (WLIP, 1), together with two new cyclic lipopeptides (CLPs) WLIPß (2) and WLIPγ (3), were characterized from the supernatant of Pseudomonas canadensis Q3-1 via precursor-directed biosynthesis (PDB) in the current study. They were purified from the supernatant of P. canadensis Q3-1 by solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC), and their structures were mainly determined via bioinformatic analyses, spectrometric and spectroscopic techniques, as well as single crystal X-ray diffraction (XRD). These WLIPs share (R)-3-hydroxydecanoic acid (HDA), but they differ from each other in the composition of peptidic sequences. In addition, these CLPs showed biocontrol activities against Phytophthora blight (caused by Phytophthora capsici) in peppers. Collectively, this study has shown that PDB could be used for generating new CLPs in Pseudomonas spp. Moreover, we have confirmed that WLIP, WLIPß, and WLIPγ could be used as lead agrochemicals to control Phytophthora blight in peppers.


Asunto(s)
Phytophthora , Piper nigrum , Pseudomonas/química , Enfermedades de las Plantas/prevención & control
13.
Biomolecules ; 13(6)2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371539

RESUMEN

Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.


Asunto(s)
Hierro , Sideróforos , Sideróforos/metabolismo , Hierro/metabolismo , Quelantes , Metabolismo Secundario
14.
Acta Pharm Sin B ; 12(11): 4193-4203, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36386473

RESUMEN

Investigation on how nature produces natural compounds with chemical and biological diversity at the genetic level offers inspiration for the discovery of new natural products and even their biological targets. The polyketide rumbrin (1) is a lipid peroxide production and calcium accumulation inhibitor, which contains a chlorinated pyrrole moiety that is a rare chemical feature in fungal natural products. Here, we identify the biosynthetic gene cluster (BGC) rum of 1 and its isomer 12E-rumbrin (2) from Auxarthron umbrinum DSM3193, and elucidate their biosynthetic pathway based on heterologous expression, chemical complementation, and isotopic labeling. We show that rumbrins are assembled by a highly reducing polyketide synthase (HRPKS) that uniquely incorporates a proline-derived pyrrolyl-CoA starer unit, and followed by methylation and chlorination. Sequent precursor-directed biosynthesis was able to yield a group of rumbrin analogues. Remarkably, inspired by the presence of a human immunodeficiency virus (HIV)-Nef-associated gene in the rum cluster, we predicted and pharmacologically demonstrated rumbrins as potent inhibitors of HIV at the nanomolar level. This work enriches the recognition of unconventional starter units of fungal PKSs and provides a new strategy for genome mining-guided drug discovery.

15.
Synth Syst Biotechnol ; 7(2): 750-755, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35387230

RESUMEN

A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that some P450s have been reported to catalyze the carbon-nitrogen (C-N) bond formation, we were curious about whether hybrids through C-N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpolyketone A and B (1 and 2), were isolated and assigned to be constructed through C-N bond formation. Their structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plausible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral activity against H1N1 with IC50 values of 45.2 and 31.4 µM, respectively. In brief, compounds 1 and 2 were reported here for the first time and were the first example of polyketide-indole hybrids pieced together through C-N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).

16.
ACS Synth Biol ; 10(9): 2151-2158, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34530615

RESUMEN

Benzoxazoles are frequently found in synthetic pharmaceuticals and medicinally active natural products. To facilitate benzoxazole-based drug development, an eco-friendly and rapid platform for benzoxazole production is required. In this study, we have completed the biosynthesis of benzoxazoles in E. coli by coexpressing the minimal set of enzymes required for their biosynthesis. Moreover, by coupling this E. coli-based platform with precursor-directed biosynthesis, we have shown that the benzoxazole biosynthetic system is highly promiscuous in incorporating fluorine, chlorine, nitrile, picolinic, and alkyne functionalities into the scaffold. Our E. coli-based system thus paves the way for straightforward generation of novel benzoxazole analogues through future protein engineering and combinatorial biosynthesis.


Asunto(s)
Benzoxazoles/metabolismo , Vías Biosintéticas/genética , Escherichia coli/metabolismo , Benzoxazoles/análisis , Benzoxazoles/química , Productos Biológicos/química , Productos Biológicos/metabolismo , Cromatografía Líquida de Alta Presión , Escherichia coli/química , Escherichia coli/genética , Ingeniería Metabólica/métodos , Familia de Multigenes , Plásmidos/genética , Plásmidos/metabolismo
17.
ACS Synth Biol ; 10(2): 286-296, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33450150

RESUMEN

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Cumáricos/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligasas/metabolismo , Plantones/enzimología
18.
Mar Drugs ; 8(4): 835-80, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20479958

RESUMEN

The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Inhibidores de Proteasoma , Pirroles/farmacología , Animales , Diseño de Fármacos , Fermentación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Tecnología Farmacéutica/métodos
19.
J Microbiol ; 56(11): 805-812, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30353466

RESUMEN

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1-6 and led to the synthesis of an additional product, which was identified as 5-(8'Z,11'Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/aislamiento & purificación , Ascomicetos/enzimología , Ascomicetos/genética , Aciltransferasas/biosíntesis , Medios de Cultivo , ADN Complementario , Escherichia coli/genética , Ácidos Grasos/metabolismo , Fermentación , Regulación de la Expresión Génica , Vectores Genéticos , Huperzia/microbiología , Filogenia , Resorcinoles/metabolismo , Saccharomyces cerevisiae/genética , Aceite de Soja/metabolismo , Especificidad por Sustrato
20.
Artículo en Inglés | MEDLINE | ID: mdl-29507740

RESUMEN

BACKGROUND: Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger, and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. RESULTS: The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350-600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify fungal spoilage of food and feed products. CONCLUSION: In this study, we show that the product portfolio of A. niger can be expanded from enniatin to other CDPs such as beauvericin and bassianolide, as well as derivatives thereof. This illustrates the capability of A. niger to produce a range of different peptide natural products in titres high enough to become industrially relevant.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda