Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26170424

RESUMEN

This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied.

2.
Sci Rep ; 14(1): 14861, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937515

RESUMEN

The combustion of hydrogen and carbon-monoxide mixtures, so-called syngas, plays an increasingly important role in the safety context of non-fossil energy generation, more specifically in the risk management of incidents in process engineering plants for ammonia synthesis and in nuclear power plants. In order to characterize and simulate syngas/air combustion on industrially relevant scales, subgrid modelling is required, which is often based on a reaction progress variable. To understand the influence of different fuel compositions, turbulence intensities and flame topologies on different possible definitions of reaction progress variable, detailed chemistry direct numerical simulations data of premixed, lean hydrogen/air and syngas/air flames has been considered. A reaction progress variable based on normalized molecular oxygen mass fraction has been found not to capture the augmentation of the normalized burning rate per unit flame surface area in comparison to the corresponding 1D unstretched premixed flame due to preferential diffusion effects. By contrast, reaction progress variables based on other individual species, such as hydrogen, can capture the augmentation of the rate of burning well, but exhibit a pronounced sensitivity to preferential diffusion effects, especially in response to flame curvatures. However, a reaction progress variable based on the linear combination of the main products can accurately represent the temperature evolution of the flame for different mixtures, turbulence intensities and varying local flame topology, while effectively capturing the augmentation of burning rate due to preferential diffusion effects. However, its tendency to assume values larger than 1.0 in the regions of super-adiabatic temperatures poses challenges for future modeling approaches, whereas the reaction progress variable based on hydrogen mass fraction remains bound between 0.0 and 1.0 despite showing deviations in comparison to corresponding variations obtained from the unstretched laminar flame depending on flame curvature variations.

3.
Sci Total Environ ; 876: 162707, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898542

RESUMEN

Ammonia is a promising fuel with high energy density, accessible storage, and no CO2 production by combustion, but its combustion produces the pollutant NO. In this study, a Bunsen burner experimental bench was selected to investigate the concentration of NO generated by ammonia combustion at different initial oxygen concentrations. Further, the reaction pathways of NO were analyzed in depth, and sensitivity analysis was performed. The results show that the Konnov mechanism has an excellent predictive effect on NO generated by ammonia combustion. In the ammonia-premixed laminar flame at atmospheric pressure, the NO concentration peaked at an equivalence ratio of 0.9. The high initial oxygen concentration enhanced the combustion of ammonia-premixed flame and increased the conversion of NH3 to NO. NO was not only a product but a contribution to the combustion of NH3. As the equivalence ratio increases, NH2 consumes a large amount of NO and reduces NO production. The high initial oxygen concentration enhanced NO production, and the effect was more pronounced at low equivalents. The study results provide theoretical guidance for the utilization of ammonia combustion and pollutant reduction and help to drive the process of ammonia combustion toward practicality.

4.
Environ Sci Pollut Res Int ; 30(21): 59781-59792, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012572

RESUMEN

Annular fire source is a common combustion form in fire accidents. Effects of Din/Dout (the ratio of inner to outer diameters of the floating-roof tank) on the flame morphology and plume entrainment mechanisms of annular pool fires were studied by numerical simulation. Results show, as Din/Dout increases, the area with low combustion intensity near the central axis of the pool surface gradually increases. Combined with the time-series HRR and the stoichiometric mixture fraction line of the fire plume, it reveals that the combustion of annular pool fire is dominated by non-premixed diffusion flame. The pressure near the pool outlet decreases with Din/Dout, while the plume turbulence presents an opposite trend. Based on the time-sequential plume flow and the gas-phase material distribution data, the flame merging mechanism of the annular pool fires is revealed. Furthermore, based on the similarity criterion, it verifies that the applicability of the above scaled simulation conclusions could also be extended to guide full-scale fires.


Asunto(s)
Incendios , Simulación por Computador
5.
Artículo en Inglés | MEDLINE | ID: mdl-35206266

RESUMEN

This paper presents the experimental and numerical study of the laminar burning velocity and pollutant emissions of the mixture gas of methane and carbon dioxide. Compared to previous research, a wider range of experimental conditions was realized in this paper: CO2 dilution level up to 60% (volume fraction) and equivalence ratio of 0.7-1.3. The burning velocities were measured using the heat flux method. The CO and NO emissions after premixed combustion were measured by a gas analyzer placed 20 cm downstream of the flame. The one-dimensional free flames were simulated using the in-house laminar flame code CHEM1D. Four chemical kinetic mechanisms, GRI-Mech 3.0, San Diego, Konnov, and USC Mech II were used in Chem1D. The results showed that, for laminar burning velocity, the simulation results are all lower than the experimental results. GRI Mech 3.0 showed the best agreement when the CO2 content was below 20%. USC Mech II showed the best consistency when the CO2 content was between 40 and 60%. For CO emission, these four mechanisms all showed a small error compared with the experiments. When CO2 content is higher than 40%, the deviation between simulation and experiment becomes bigger. When the CO2 ratio is more than 20%, the proportion of CO2 does not affect CO emission so much. For NO emission, when the CO2 content is 40%, the results from simulation and experiment showed a good agreement. As the proportion of CO2 increases, the difference in NO emissions decreases.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Metano/análisis
6.
Front Chem ; 8: 511792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240839

RESUMEN

This study numerically investigates a two-dimensional physical model of methane/air mixture combustion in catalytic and non-catalytic porous media. The temperature distribution and flame stability of combustion in inert alumina (Al2O3) pellets and platinum (Pt) catalyst-supported alumina (Al2O3) pellets, were studied by changing the burner structure, operating parameters, and physical properties of alumina pellets. The simulation results indicated that the gas temperature in the inert porous medium is higher than that in a catalytic porous medium, while the solid temperature in an inert porous medium is lower than that in a catalytic porous medium. The flame moved toward the burner exit with the increasing diameter of the packed pellets at a lower equivalence ratio and moved toward upstream with the increased thermal conductivity of packed pellets. The flame location of the catalytic porous burner was more sensitive to the flame velocity and insensitive to thermal conductivity compared to the inert porous burner. The distance of the flame location to the burner inlet is almost constant with the increasing length of the porous media for both the catalytic and inert porous burner, while the relative position of the flame location moved toward the upstream.

7.
Flow Turbul Combust ; 101(4): 1103-1118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613189

RESUMEN

The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement a transported Probability Density Function modelling framework into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid should resolve flame-like structures that arise from solution of the Stochastic Fields equation. Through analysis of Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is shown that the flame-like structures in the Stochastic Fields simulations can be orders of magnitude narrower than the LES filter length scale. The under-resolution is worst for low Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures is on the order of the laminar flame thickness. The effect of resolution on LES predictions is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect of refining the grid spacing and filter length scale independently. The usual practice of setting the LES filter length scale equal to grid spacing leads to severe under-resolution and numerical thickening of the flame, and to substantial error in the turbulent flame speed. The numerical resolution required for accurate solution of the Stochastic Fields equations is prohibitive for many practical applications involving high-pressure premixed combustion. This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic Fields simulations.

8.
Flow Turbul Combust ; 101(4): 1119-1136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613190

RESUMEN

The Stochastic Fields approach is an effective way to implement transported Probability Density Function modelling into Large Eddy Simulation of turbulent combustion. In premixed turbulent combustion however, thin flame-like structures arise in the solution of the Stochastic Fields equations that require grid spacing much finer than the filter scale used for the Large Eddy Simulation. The conventional approach of using grid spacing equal to the filter scale yields substantial numerical error, whereas using grid spacing much finer than the filter length scale is computationally-unaffordable for most industrially-relevant combustion systems. A Thickened Stochastic Fields approach is developed in this study in order to provide physically-accurate and numerically-converged solutions of the Stochastic Fields equations with reduced compute time. The Thickened Stochastic Fields formulation bridges between the conventional Stochastic Fields and conventional Thickened-Flame approaches depending on the numerical grid spacing utilised. One-dimensional Stochastic Fields simulations of freely-propagating turbulent premixed flames are used in order to obtain criteria for the thickening factor required, as a function of relevant physical and numerical parameters, and to obtain a model for an efficiency function that accounts for the loss of resolved flame surface area caused by applying the thickening transformation to the Stochastic Fields equations. The Thickened Stochastic Fields formulation is tested by performing LES of a laboratory premixed Bunsen flame. The results demonstrate that the Thickened Stochastic Fields method produces accurate predictions even when using a grid spacing equal to the filter scale. The present development therefore facilitates the accurate application of the Stochastic Fields approach to industrially-relevant combustion systems.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda