RESUMEN
Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.
Asunto(s)
Agresión/fisiología , Lactancia/metabolismo , Prolactina/metabolismo , Animales , Femenino , Hipotálamo/metabolismo , Masculino , Conducta Materna/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Área Preóptica/metabolismo , Receptores de Prolactina/metabolismo , Tálamo/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismoRESUMEN
Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.
RESUMEN
Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.
Asunto(s)
Bulbo Olfatorio , Prolactina , Conducta Sexual Animal , Animales , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Femenino , Prolactina/metabolismo , Prolactina/farmacología , Ratones , Masculino , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de los fármacos , Receptores de Prolactina/metabolismo , Maduración Sexual/fisiología , Conducta Social , Feromonas/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismoRESUMEN
Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.
Asunto(s)
Ansiedad , Hipocampo , Proteína con Dominio Pirina 3 de la Familia NLR , Periodo Posparto , Prolactina , Receptores de Prolactina , Animales , Femenino , Prolactina/sangre , Prolactina/metabolismo , Hipocampo/metabolismo , Embarazo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ansiedad/metabolismo , Receptores de Prolactina/metabolismo , Ratones , Periodo Posparto/metabolismo , Condicionamiento Físico Animal/fisiología , Depresión Posparto/metabolismo , Depresión Posparto/prevención & control , Depresión/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Carrera/fisiología , Carrera/psicologíaRESUMEN
Prolactin is involved in regulating various physiological activities of vertebrates and is one of the most momentous pituitary hormones. However, not enough attention is currently paid to prolactin, especially in teleost. This paper aims to gather, organize, and analyze recent studies on the regulation and functions of prolactin. By comparing with other animal groups, it highlights the significant role of prolactin in fish reproduction, immunity, growth, and osmotic pressure regulation, as well as the upstream and downstream factors that may be involved in the regulation of prolactin functions were introduced to provide a theoretical basis for the in-depth study and potential practical application of prolactin.
Asunto(s)
Peces , Prolactina , Animales , Prolactina/metabolismo , Peces/metabolismo , Peces/fisiología , Reproducción/fisiologíaRESUMEN
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Asunto(s)
Ovulación , Prolactina , Animales , Femenino , Humanos , Kisspeptinas/metabolismo , Mamíferos/metabolismo , Ovulación/metabolismo , Adenohipófisis/metabolismo , Prolactina/metabolismo , Receptores de Prolactina/metabolismoRESUMEN
Parental care is critical for successful reproduction in mammals. Recent work has implicated the hormone prolactin in regulating male parental behavior, similar to its established role in females. Male laboratory mice show a mating-induced suppression of infanticide (normally observed in virgins) and onset of paternal behavior 2 weeks after mating. Using this model, we sought to investigate how prolactin acts in the forebrain to regulate paternal behavior. First, using c-fos immunoreactivity in prolactin receptor (Prlr) Prlr-IRES-Cre-tdtomato reporter mouse sires, we show that the circuitry activated during paternal interactions contains prolactin-responsive neurons in multiple sites, including the medial preoptic nucleus, bed nucleus of the stria terminalis, and medial amygdala. Next, we deleted Prlr from three prominent cell types found in these regions: glutamatergic, GABAergic, and CaMKIIα. Prlr deletion from CaMKIIα, but not glutamatergic or GABAergic cells, had a profound effect on paternal behavior as none of these KO males completed the pup-retrieval task. Prolactin was increased during mating, but not in response to pups, suggesting that the mating-induced secretion of prolactin is important for establishing the switch from infanticidal to paternal behavior. Pharmacological blockade of prolactin secretion at mating, however, had no effect on paternal behavior. In contrast, suppressing prolactin secretion at the time of pup exposure resulted in failure to retrieve pups, with exogenous prolactin administration rescuing this behavior. Together, our data show that paternal behavior in sires is dependent on basal levels of circulating prolactin acting at the time of interaction with pups, mediated through Prlr on CaMKIIα-expressing neurons.SIGNIFICANCE STATEMENT Parental care is critical for offspring survival. Compared with maternal care, however, the neurobiology of paternal care is less well understood. Here we show that the hormone prolactin, which is most well known for its female-specific role in lactation, has a role in the male brain to promote paternal behavior. In the absence of prolactin signaling specifically during interactions with pups, father mice fail to show normal retrieval behavior of pups. These data demonstrate that prolactin has a similar action in both males and females to promote parental care.
Asunto(s)
Conducta Paterna , Prolactina , Animales , Femenino , Masculino , Ratones , Encéfalo/fisiología , Conducta Materna , Conducta Paterna/fisiología , Área Preóptica/fisiología , Prolactina/metabolismo , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismoRESUMEN
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Asunto(s)
Glándulas Mamarias Animales , Glándulas Mamarias Humanas/crecimiento & desarrollo , Neoplasias/etiología , Prolactina/efectos adversos , Prolactina/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Metástasis de la NeoplasiaRESUMEN
BACKGROUND: About 20% of breast cancers in humans are basal-like, a subtype that is often triple-negative and difficult to treat. An effective translational model for basal-like breast cancer is currently lacking and urgently needed. To determine whether spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. METHODS: We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We identified feature genes for human BLBC and luminal A subtypes via machine learning and used these genes to repeat canine-alone and cross-species tumor classifications. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. RESULTS: Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 and feature gene classifications, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched in histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors and with the expression of T cell exhaustion markers (e.g., PDCD1) in ER-PR+ canine tumors. CONCLUSIONS: We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall and thus could serve as a vital translational model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.
Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Humanos , Perros , Animales , Femenino , Neoplasias de la Mama/patología , Biomarcadores de Tumor/genética , Receptor ErbB-2/metabolismo , Neoplasias Mamarias Animales/genética , Receptores de Progesterona/metabolismoRESUMEN
BACKGROUND: Development of precision medicine requires the identification of easily detectable and druggable biomarkers. Despite recent targeted drug approvals, prognosis of acute myeloid leukemia (AML) patients needs to be greatly improved, as relapse and refractory disease are still difficult to manage. Thus, new therapeutic approaches are needed. Based on in silico-generated preliminary data and the literature, the role of the prolactin (PRL)-mediated signaling was interrogated in AML. METHODS: Protein expression and cell viability were determined by flow cytometry. Repopulation capacity was studied in murine xenotransplantation assays. Gene expression was measured by qPCR and luciferase-reporters. SA-ß-Gal staining was used as a senescence marker. RESULTS: The prolactin receptor (PRLR) was upregulated in AML cells, as compared to their healthy counterpart. The genetic and molecular inhibition of this receptor reduced the colony-forming potential. Disruption of the PRLR signaling, either using a mutant PRL or a dominant-negative isoform of PRLR, reduced the leukemia burden in vivo, in xenotransplantation assays. The expression levels of PRLR directly correlated with resistance to cytarabine. Indeed, acquired cytarabine resistance was accompanied with the induction of PRLR surface expression. The signaling associated to PRLR in AML was mainly mediated by Stat5, in contrast to the residual function of Stat3. In concordance, Stat5 mRNA was significantly overexpressed at mRNA levels in relapse AML samples. A senescence-like phenotype, measured by SA-ß-gal staining, was induced upon enforced expression of PRLR in AML cells, partially dependent on ATR. Similar to the previously described chemoresistance-induced senescence in AML, no cell cycle arrest was observed. Additionally, the therapeutic potential of PRLR in AML was genetically validated. CONCLUSIONS: These results support the role of PRLR as a therapeutic target for AML and the further development of drug discovery programs searching for specific PRLR inhibitors.
RESUMEN
The objectives of the current study were to identify polymorphism in the prolactin receptor (PRLR) gene among three Egyptian goat breeds (Zaraibi, Damascus, and Barki) and to investigate the association between PRLR genotype, parity, season of kidding, and litter size factors with milk yield and reproductive traits of Zaraibi goats. One hundred and ninety blood samples were collected for DNA extraction, with 110 from Zaraibi, 40 from Barki, and 40 from Damascus breeds. Three genotypes, CC, CT and TT, for the prolactin receptor gene were identified in the 190 DNA samples using restriction fragment length polymorphism and were confirmed by direct sequencing technique. Milk yield during suckling and lactation periods in addition to age at first conception, gestation length, and litter size were determined in 110 Zaraibi goats. The Zaraibi goats recorded the highest heterozygosity (0.495) and the effective number of alleles (1.972). The g.62130C > T SNP showed a significant association (p < 0.01) with suckling, lactation, and total milk yield of Zaraibi goats with the highest values recorded at the third parity. Age at the first conception and gestation length traits were significantly influenced by the kidding season (p < 0.05) with younger age in autumn and shorter length in spring seasons. Milk yield during the suckling period was significantly (p < 0.01) higher in the case of triplets' litter size. The current study showed that litter size and parity played an important role in the amount of Zaraibi goats' milk yield. The g.62130C > T SNP of the PRLR gene may be a useful marker for assisted selection programs to improve goat milk yield during suckling and lactation periods with the heterozygous genotype CT recording the highest values.
Asunto(s)
Prolactina , Receptores de Prolactina , Embarazo , Femenino , Animales , Receptores de Prolactina/genética , Alelos , Prolactina/genética , Cabras/genética , Egipto , Leche , ADNRESUMEN
A total of 266 records of buffalo raised in two experimental herds in Egypt were assessed to detect prolactin (PRL) and prolactin receptor (PRLR) genes' polymorphism using PCR-Single Strand Conformational Polymorphism (SSCP) and PCR-Restricted Fragment Length Polymorphism (RFLP) techniques as well as to investigate their association with calf birth weight (BW), weaning weight (WW), lactation period (LP), total milk yield (TMY), stillbirth, calving ease (CE), gestation length (GL), postpartum interval to pregnancy (PPIP), calving interval (CI), and age at first calving (AFC). Predicted breeding values were estimated and used in the association with detected genotypes. A monomorphic pattern of the studied PRL 156 bp segment was recorded and absence of its polymorphism in buffalo was corroborated. We also determined polymorphism of PRLR reflected in three loci: PRLR2, PRLR4, and PRLR9. Significant differences among PRLP9 genotypes (AA, AB, and BB) were displayed for all studied traits as well as among PRLR2 genotypes, except for CE, while PRLR4 genotypes significantly differed only in BW, WW, TMY, stillbirth, GL, and AFC. In practice, strong associations among genotypes of the PRLR gene and the traits of interest candidate this gene to be selective in Egyptian buffalo breeding for improving both productive and reproductive traits.
Asunto(s)
Prolactina , Receptores de Prolactina , Embarazo , Femenino , Animales , Prolactina/genética , Receptores de Prolactina/genética , Búfalos/genética , Egipto , Mortinato , GenotipoRESUMEN
BACKGROUND: Astragalus polysaccharide (APS) is a major bioactive component of the Chinese herb astragalus, with well-established protective effects on the kidney. However, the effect of APS on diabetic nephropathy (DN) is unclear. METHODS: Long non-coding RNA (lncRNA) expression profiles in kidney samples from control, db/db, and APS-treated db/db mice were evaluated using RNA high-throughput sequencing techniques. Additionally, rat renal tubular epithelial (NRK-52E) cells were cultured in high glucose (HG) media. We inhibited the expression of Gm41268 and prolactin receptor (PRLR) by transfecting NRK-52E cells with Gm41268-targeting antisense oligonucleotides and PRLR siRNA. RESULTS: We found that APS treatment reduced 24-h urinary protein levels and fasting blood glucose and improved glucose intolerance and pathological renal damage in db/db mice. Furthermore, APS treatment enhanced autophagy and alleviated fibrosis in the db/db mice. We identified a novel lncRNA, Gm41268, which was differentially expressed in the three groups, and the cis-regulatory target gene PRLR. APS treatment induced autophagy by reducing p62 and p-mammalian target of rapamycin (mTOR) protein levels and increasing the LC3 II/I ratio. Furthermore, APS alleviated fibrosis by downregulating fibronectin (FN), transforming growth factor-ß (TGF-ß), and collagen IV levels. In addition, APS reversed the HG-induced overexpression of Gm41268 and PRLR. Reduction of Gm41268 decreased PRLR expression, restored autophagy, and ameliorated renal fibrosis in vitro. Inhibition of PRLR could enhance the protective effect of APS. CONCLUSIONS: In summary, we demonstrated that the therapeutic effect of APS on DN is mediated via the Gm41268/PRLR pathway. This information contributes to the exploration of bioactive constituents in Chinese herbs as potential treatments for DN.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , ARN Largo no Codificante , Ratones , Ratas , Animales , Nefropatías Diabéticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Receptores de Prolactina , Autofagia , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Fibrosis , Mamíferos/genética , Mamíferos/metabolismoRESUMEN
Prolactin (PRL) and growth hormone (GH) are peptide hormones that bind to the class 1 cytokine receptor superfamily, a highly conserved cell surface class of receptors. Both hormones control their own secretion via a negative autocrine loop in their own mammosomatotroph, lactotroph or somatotroph. In this regard, GH and PRL are regulated by similar signaling pathways involving cell growth and hormone secretion. Thus, GH and PRL dysregulation and pituitary neuroendocrine tumor (PitNET) development may have common pathogenic pathways. Based on cell linage, lactotroph and somatotroph PitNETs come from pituitary-specific POU-class homeodomain transcription factor (Pit-1). Mammosomatotroph and plurihormonal PitNETs are a unique subtype of PitNETs that arise from a single-cell population of Pit-1 lineage. In contrast, mixed somatotroph-lactotroph PitNETs are composed of two distinct cell populations: somatotrophs and lactotrophs. Morphologic features that distinguish indolent PitNETs from locally aggressive ones are still unidentified, and no single prognostic parameter can predict tumor aggressiveness or treatment response. In this review, we aim to explore the latest research on lactotroph and somatotroph PitNETs, the molecular mechanisms involved in PRL and GH axis regulation and the signaling pathways involved in their aggressiveness, particularly focused on mammosomatotroph and mixed subtypes. Finally, we summarize epidemiological, clinical, and radiological features of these exceptional tumors. We aim to shed light, from basic to clinical settings, on new perspectives and scientific gaps in this field.
RESUMEN
Medulloblastoma is the most common pediatric embryonal brain tumor, and may occur in cancer predisposition syndromes. We describe novel associations of medulloblastoma with atypical prolactinoma and dural high-grade sarcoma in Li-Fraumeni syndrome (LFS), and epidural desmoid fibromatosis in familial adenomatous polyposis (FAP)/Turcot syndrome. Genomic analysis showing XRCC3 alterations suggested radiotherapy as contributing factor to the progression of LFS-associated medulloblastoma, and demonstrated different mechanisms of APC inactivation in the FAP-associated tumors. The integrated genomic-transcriptomic analysis uncovered the growth pathways driving tumorigenesis, including the prolactin-prolactin receptor (PRLR) autocrine loop and Shh pathway in the LFS-associated prolactinoma and medulloblastoma, respectively, the Wnt pathway in both FAP-associated neoplasms, and the TGFß and Hippo pathways in the soft tissue tumors, regardless of germline predisposition. In addition, the comparative analysis of paired syndromic neoplasms revealed several growth pathways susceptible to therapeutic intervention by PARP, PRLR, and selective receptor tyrosine kinase (RTK) inhibitors. These could target the defective DNA damage repair in the LFS-associated medulloblastoma, the prolactin autocrine loop in the atypical prolactinoma, the EPHA3/7 and ALK overexpression in the FAP-associated medulloblastoma, and the multi-RTK upregulation in the soft tissue neoplasms. This study presents the spatiotemporal evolution of novel neoplastic associations in syndromic medulloblastoma, and discusses the post-radiotherapy risk for secondary malignancies in syndromic pediatric patients, with important implications for the biology, diagnosis, and therapy of these tumors. Video Abstract.
Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Hipofisarias , Prolactinoma , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Cerebelosas/genética , Niño , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , ProlactinaRESUMEN
OBJECTIVE: Determination of possible sex differences in mechanisms promoting migraine progression and the contribution of prolactin and the prolactin long (PRLR-L) and short (PRLR-S) receptor isoforms. BACKGROUND: The majority of patients with chronic migraine and medication overuse headache are female. Prolactin is present at higher levels in women and increases migraine. Prolactin signaling at the PRLR-S selectively sensitizes nociceptors in female rodents, while expression of the PRLR-L is protective. METHODS: Medication overuse headache was modeled by repeated sumatriptan administration in male and female mice. Periorbital and hindpaw cutaneous allodynia served as a surrogate of migraine-like pain. PRLR-L and PRLR-S isoforms were measured in the trigeminal ganglion with western blotting. Possible co-localization of PRLR with serotonin 5HT1B and 5HT1D receptors was determined with RNAscope. Cabergoline, a dopamine receptor agonist that inhibits circulating prolactin, was co-administered with sumatriptan. Nasal administration of CRISPR/Cas9 plasmid was used to edit expression of both PRLR isoforms. RESULTS: PRLR was co-localized with 5HT1B or 5HT1D receptors in the ophthalmic region of female trigeminal ganglion. A single injection of sumatriptan increased serum PRL levels in female mice. Repeated sumatriptan promoted cutaneous allodynia in both sexes but down-regulated trigeminal ganglion PRLR-L, without altering PRLR-S, only in females. Co-administration of sumatriptan with cabergoline prevented allodynia and down-regulation of PRLR-L only in females. CRISPR/Cas9 editing of both PRLR isoforms in the trigeminal ganglion prevented sumatriptan-induced periorbital allodynia in females. INTERPRETATION: We identified a sexually dimorphic mechanism of migraine chronification that involves down-regulation of PRLR-L and increased signaling of circulating prolactin at PRLR-S. These studies reveal a previously unrecognized neuroendocrine mechanism linking the hypothalamus to nociceptor sensitization that increases the risk of migraine pain in females and suggest opportunities for novel sex-specific therapies including gene editing through nasal delivery of CRISPR/Cas9 constructs.
Asunto(s)
Cefaleas Secundarias , Trastornos Migrañosos , Animales , Femenino , Humanos , Hiperalgesia/inducido químicamente , Masculino , Ratones , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Prolactina/efectos adversos , Prolactina/metabolismo , Sumatriptán/farmacologíaRESUMEN
The SLICK1 mutation in the prolactin receptor (PRLR) results in a short-hair coat and increased ability to regulate body temperature during heat stress. It is unclear whether the mutation affects capacity for sweating. The objective of this observational study was to evaluate whether the SLICK1 mutation in PRLR alters characteristics of skin related to sweat gland abundance or function. Skin biopsies from 31 Holstein heifers, including 14 wild-type (SL-/-) and 17 heterozygous slick (SL+/-), were subjected to histological analysis to determine the percent of the surface area of skin sections that are occupied by sweat glands. We detected no effect of genotype on this variable. Immunohistochemical analysis of the forkhead transcription factor A1 (FOXA1), a protein essential for sweating in mice, from 6 SL-/- and 6 SL+/- heifers indicated twice as much FOXA1 in sweat glandular epithelia of SL+/- heifers as in SL-/- heifers. Results from RNA sequencing of skin biopsies from 5 SL-/- and 7 SL+/- heifers revealed few genes that were differentially expressed and none that have been associated with sweat gland development or function. In conclusion, results do not support the idea that the SLICK1 mutation changes the abundance of sweat glands in skin, but do show that functional properties of sweat glands, as indicated by increased abundance of immunoreactive FOXA1, are modified by inheritance of the mutation in PRLR.
Asunto(s)
Receptores de Prolactina , Glándulas Sudoríparas , Animales , Bovinos , Femenino , Ratones , Factores de Transcripción Forkhead/genética , Expresión Génica , MutaciónRESUMEN
Breast cancer, a hormone-dependent tumour, generally includes four molecular subtypes (luminal A, luminal B, HER2 enriched and triple-negative) based on oestrogen receptor, progesterone receptor and human epidermal growth factor receptor-2. Multiple hormones in the body regulate the development of breast cancer. Endocrine therapy is one of the primary treatments for hormone-receptor-positive breast cancer, but endocrine resistance is the primary clinical cause of treatment failure. Prolactin (PRL) is a protein hormone secreted by the pituitary gland, mainly promoting mammary gland growth, stimulating and maintaining lactation. Previous studies suggest that high PRL levels can increase the risk of invasive breast cancer in women. The expression levels of PRL and PRLR in breast cancer cells and breast cancer tissues are elevated in most ER+ and ER- tumours. PRL activates downstream signalling pathways and affects endocrine therapy resistance by combining with prolactin receptor (PRLR). In this review, we illustrated and summarized the correlations between endocrine therapy resistance in breast cancer and PRL, as well as the pathophysiological mechanisms and clinical practices. The study on PRL and its receptor would help explore reversing endocrine therapy-resistance for breast cancer.
Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Prolactina/metabolismo , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/etiología , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos/efectos de los fármacos , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Neoplásicas , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: The male and female prostates are controlled by steroid hormones, suffering important morphological and physiological changes after castration. Prolactin is involved in the regulation of the male prostate, having already been identified in the tissue, acting through its receptor PRLR. In the Mongolian gerbil, in addition to the male prostate, the female prostate is also well developed and active in its secretion processes. The aim of the present study was to evaluate the effects of exposure to exogenous prolactin in the prostate of both intact and castrated male and female gerbils in order to establish if prolactin administration can sustain prostate cell activity in conditions of sexual hormone deprivation. METHODS: The morphological analyses were performed by biometric analysis, lesion histological analysis and morphometric-stereological aspects. In addition, immune-cytochemical tests were performed for prolactin and its receptor, as well as for the receptors of androgen and oestrogen and serum prolactin dosage. All data were submitted to ANOVA or Kruskal-Wallis tests for comparison between groups. P < 0.05 was considered to be statistically significant. RESULTS: The results showed a strong influence of prolactin on the morphology of the prostate, with the development of important epithelial alterations, after only 3 days of administration, and an expressive epithelial cell discard process after 30 days of administration. Prolactin acts in synergy with testosterone in males and mainly with oestrogens in females, establishing different steroid hormonal receptor immunoreactivity according to sex. It was also demonstrated that prolactin can assist in the recovery from some atrophic effects caused in the gland after castration, without causing additional tissue damage. CONCLUSIONS: The prolactin and its receptor are involved in the maintenance of the homeostasis of male and female gerbils, and also cause distinct histological alterations after exogenous exposure for 3 and 30 days. The effects of prolactin are related to its joint action on androgens and oestrogens and it can also assist in the recovery from the atrophic effects of castration.
Asunto(s)
Orquiectomía/efectos adversos , Ovariectomía/efectos adversos , Prolactina/administración & dosificación , Próstata/efectos de los fármacos , Próstata/patología , Recuperación de la Función/efectos de los fármacos , Animales , Atrofia , Femenino , Gerbillinae , Masculino , Orquiectomía/tendencias , Ovariectomía/tendencias , Prolactina/metabolismo , Próstata/metabolismo , Receptores de Prolactina/agonistas , Receptores de Prolactina/metabolismo , Recuperación de la Función/fisiologíaRESUMEN
BACKGROUND: Prolactin receptor (PRLR) is an attractive antibody therapeutic target with expression across a broad population of breast cancers. Antibody efficacy, however, may be limited to subtypes with either PRLR overexpression and/or those where estradiol no longer functions as a mitogen and are, therefore, reliant on PRLR signaling for growth. In contrast a potent PRLR antibody-drug conjugate (ADC) may provide improved therapeutic outcomes extending beyond either PRLR overexpressing or estradiol-insensitive breast cancer populations. METHODS: We derived a novel ADC targeting PRLR, ABBV-176, that delivers a pyrrolobenzodiazepine (PBD) dimer cytotoxin, an emerging class of warheads with enhanced potency and broader anticancer activity than the clinically validated auristatin or maytansine derivatives. This agent was tested in vitro and in vivo cell lines and patient derived xenograft models. RESULTS: In both in vitro and in vivo assays, ABBV-176 exhibits potent cytotoxicity against multiple cell line and patient-derived xenograft breast tumor models, including triple negative and low PRLR expressing models insensitive to monomethyl auristatin (MMAE) based PRLR ADCs. ABBV-176, which cross links DNA and causes DNA breaks by virtue of its PBD warhead, also demonstrates enhanced anti-tumor activity in several breast cancer models when combined with a poly-ADP ribose polymerase (PARP) inhibitor, a potentiator of DNA damage. CONCLUSIONS: Collectively the efficacy and safety profile of ABBV-176 suggest it may be an effective therapy across a broad range of breast cancers and other cancer types where PRLR is expressed with the potential to combine with other therapeutics including PARP inhibitors.