Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Chembiochem ; : e202400561, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172538

RESUMEN

Protein phosphatase-1 (PP1) is a ubiquitous enzyme counteracting hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency and highlight the need for comprehensive in vitro analysis before cellular experiments.

2.
Chemistry ; 30(30): e202400479, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38545936

RESUMEN

The chemical synthesis of complex oligosaccharides relies on efficient and highly reproducible glycosylation reactions. The outcome of a glycosylation is contingent upon several environmental factors, such as temperature, acidity, the presence of residual moisture, as well as the steric, electronic, and conformational aspects of the reactants. Each glycosylation proceeds rapidly and with a high yield within a rather narrow temperature range. For better control over glycosylations and to ensure fast and reliable reactions, a systematic analysis of 18 glycosyl donors revealed the effect of reagent concentration, water content, protecting groups, and structure of the glycosyl donors on the activation temperature. With these insights, we parametrize the first step of the glycosylation reaction to be executed reliably and efficiently.

3.
Chemistry ; 30(9): e202303271, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38149455

RESUMEN

It was demonstrated that α-hydroxycarboxamide is an excellent boron-protecting group. The reaction between α-hydroxycarboxamide and organoboronic acids produced stable oxazaborolidinones (OxBs), in which the sp 2 ${{_{{\rm sp}{^{2}}}}}$ -hybridized boron atom was sterically protected by α-hydroxycarboxamide. The alkyl groups of the α-hydroxycarboxamide moiety can dynamically cover the p-orbital of the sp 2 ${{_{{\rm sp}{^{2}}}}}$ -hybridized boron center, creating a small space around the boron atom, allowing for smooth transmetalation by a Pd catalyst and easy deprotection by water. This protecting phenomenon is effective for readily purification, Suzuki-Miyaura coupling reactions with unstable boronic acids and iterative cross-couplings.

4.
Chemistry ; 30(4): e202303501, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37983752

RESUMEN

Detailed investigations into the stepwise bis-functionalization of a pillar[5]arene-containing rotaxane building block have been carried out. Upon a first stopper exchange, the pillar[5]arene moiety of the mono-acylated product is preferentially located close to its reactive pentafluorophenyl ester stopper, thus limiting the accessibility to the reactive carbonyl group by the nucleophilic reagents. Selective mono-functionalization is thus very efficient. Introduction of a second stopper is then possible to generate dissymmetrical rotaxanes with different amide stoppers. Moreover, when dethreading is possible upon the second acylation, the pillar[5]arene plays the role of a protecting group allowing the synthesis of dissymmetrical axles that are particularly difficult to prepare under statistical conditions. Finally, detailed conformation analysis of the rotaxanes revealed that the position of the pillar[5]arene moiety on its axle subunit is mainly governed by polar interactions in nonpolar organic solvents, whereas solvophobic effects play a major role in polar solvents.

5.
Chemistry ; : e202403288, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333757

RESUMEN

A robust, practical, and sustainable isomerization-suppressed peptide bond formation via acyl sulfonamide, a twisted amide, is disclosed. Tosyl isocyanate and pentafluorobenzyl bromide were applied in combination to activate the peptide C-terminus, which then reacted with an amine to yield an elongated peptide with high stereochemical purity. Careful analysis of NMR spectra of the active intermediate revealed the presence of an intramolecular hydrogen bond, suggesting that the hydrogen bond suppressed Cα-epimerization during amidation. The isomerization suppression by the intramolecular hydrogen bond is expected to be effective even under high dilution conditions, making the present method a powerful tool for the synthesis of complex macrocyclic peptides. In addition to peptide synthesis, the developed synthetic entry to twisted amides can be applied to the investigation of transition metal-catalyzed N-C bond activation. Moreover, the application to the N-C bond activation returned insight into peptide synthesis, leading to the use of sulfonamide as a protecting group of carboxylic acid that can be orthogonally removed in the presence of other conventional protecting groups.

6.
Chemistry ; 30(53): e202402076, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-38949119

RESUMEN

"Tandem" uncaging systems, in which a photolabile protecting group (PPG) is sensitized by an energy-harvesting antenna, may increase the photosensitivity of PPGs by several orders of magnitude for two-photon (2P) photorelease. Yet, they remain poorly accessible because of arduous multi-step synthesis. In this work, we design efficient tandem uncaging systems by (i) using a convenient assembly of the building blocks relying on click chemistry, (ii) introducing H-bonding induced proximity thus facilitating (iii) photoinduced electron transfer (PeT) as a cooperative mechanism. A strong two-photon absorber electron-donating quadrupolar antenna and various electron-accepting PPGs (mDEAC, MNI or MDNI) were clicked stepwise onto a "tweezer-shaped" pyrido-2,6-dicarboxylate platform whose H-bonding and π-stacking abilities were exploited to keep the antenna and the PPGs in close proximity. The different electron-accepting ability of the PPGs led to dyads with wildly different behaviors. Whilst the MDNI and MNI dyads showed poor dark stability or no photo-uncaging ability due to their too high electron-accepting character, the mDEAC dyad benefited from optimum redox potentials to promote PeT and slow down charge recombination, resulting in enhanced uncaging quantum yield (Φu=0.38) compared to mDEAC (Φu=0.014). This unique combination resulted in large 2P photo-sensitivity in the near-infrared window (240 GM at 710 nm).

7.
Chem Biodivers ; 21(2): e202301729, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241063

RESUMEN

Nature-derived products, like juices and peel extracts of fruits and vegetables, have emerged in recent years as interesting and sustainable alternatives to traditional solvents in several synthetic applications. Herein, we present a green and fast method for the N-acetylation of amino acids, using several bio-based solvents (vinegar, tomato/kiwi/apple peel extracts, lemon juice, etc.). The high reactivity of the amino group is often a limitation in synthetic processes, making its protection a necessary step to achieve pure products and limit side reactions. Therefore, versatile, time-efficient procedures, minimal purification efforts, and good yields are desirable features for these transformations. Our new method meets all these criteria, offering a valuable and eco-friendly alternative to traditional approaches. In detail, we managed to obtain comparable yields to established setups, while improving safety and reducing the environmental impact of the overall process. Most notably, the milder conditions made it possible to avoid the use of running water (saving about 250 L/reaction) and electric-powered cooling devices.


Asunto(s)
Aminoácidos , Frutas , Solventes , Acetilación , Aminas
8.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611709

RESUMEN

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Asunto(s)
Antifibrinolíticos , Técnicas de Síntesis en Fase Sólida , Alquilación , Aminoácidos , Resinas de Plantas , Péptidos
9.
Angew Chem Int Ed Engl ; : e202411380, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140843

RESUMEN

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.

10.
Beilstein J Org Chem ; 20: 181-192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318458

RESUMEN

The development of new methods for chemical glycosylation commonly includes comparison of various glycosyl donors. An attempted comparison of chemical properties of two sialic acid-based thioglycoside glycosyl donors, differing only in the substituent at O-9 (trifluoroacetyl vs chloroacetyl), at different concentrations (0.05 and 0.15 mol·L-1) led to mutually excluding conclusions concerning their relative reactivity and selectivity, which prevented us from revealing a possible influence of remote protective groups at O-9 on glycosylation outcome. According to the results of the supramer analysis of the reaction solutions, this issue might be related to the formation of supramers of glycosyl donors differing in structure hence chemical properties. These results seem to imply that comparison of chemical properties of different glycosyl donors may not be as simple and straightforward as it is usually considered.

11.
Chembiochem ; 24(16): e202300313, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37311168

RESUMEN

Aryl diazonium cations are versatile bioconjugation reagents due to their reactivity towards electron-rich aryl residues and secondary amines, but historically their usage has been hampered by both their short lifespan in aqueous solution and the harsh conditions required to generate them in situ. Triazabutadienes address many of these issues as they are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV-exposure rapidly release aryl diazonium cations under biologically-relevant conditions. This paper describes the synthesis of a novel maleimide-functionalized triazabutadiene suitable for site-selectively installing aryl diazonium cations into proteins at neutral pH; we show reaction with this molecule and a surface-cysteine of a thiol disulfide oxidoreductase. Through photoactivation of the site-selectively installed triazabutadiene motifs, we generate aryl diazonium functionality, which we further derivatize via azo-bond formation to electron-rich aryl species, showcasing the potential utility of this strategy for the generation of photoswitches or protein-drug conjugates.


Asunto(s)
Proteínas de la Membrana , Concentración de Iones de Hidrógeno , Maleimidas
12.
Chemistry ; 29(51): e202301707, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37460442

RESUMEN

Functionalization of single-walled carbon nanotubes (SWCNTs) has attracted interest because it alters the near-infrared (NIR) photoluminescence (PL) wavelength and emission efficiency. These modifications depend on the binding configuration and degree of functionalization. Excessive functionalization reduces the emission efficiency as the integrity of the conjugated π system decreases; thus, controlling the degree of functionalization is essential. Because the binding configurations and degree of functionalization are affected by the reagent structure, a stepwise approach combining SWCNTs functionalization and subsequent reactions to introduce functional groups into the addenda could effectively control their PL properties and functionalities. We studied this approach by implementing the reductive alkylation of SWCNTs by using bromoalkanes with t-butyl carbamate (Boc)-protected amino groups and subsequent deprotection and amidation reactions. The reaction products were analyzed based on absorption, PL, and Raman spectroscopy and the Kaiser test. Depending on the structure of the reagent, deprotection and amidation reactions competed with the elimination reaction of addenda, altering the PL properties of the SWCNTs. Furthermore, the elimination reaction was inhibited in the adducts functionalized using dibromoalkane with Boc-protected amino groups, demonstrating that the use of appropriate reagents enables the molecular conversion of the functional groups of SWCNT adducts without affecting their PL properties.

13.
Chemistry ; 29(17): e202204014, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36562762

RESUMEN

A system of two coumarin-based caging groups is presented - one absorbing in the blue (400-450 nm) and the other absorbing in the green (480-550 nm) part of the visible spectrum. Together they form a pair, which allows to selectively photoactivate the one or the other in oligonucleotides. A numerical characterization defining the term "chromatic selectivity" was proposed, and it was shown how chromatically selective uncaging can literally be titrated in a kinetic reaction scheme.

14.
Chemistry ; 29(32): e202300849, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36972395

RESUMEN

We describe an operationally simple and user-friendly protocol that allows the site-selective hydrogenation and deuteration of di-, tri- and tetrasubstituted benzylic olefins by electroreduction while other groups prone to hydrogenation are present. The radical anionic intermediates react with the most inexpensive hydrogen/deuterium source H2 O/D2 O. Our method overcomes many limitations that arise from previously reported electroreductive hydrogenations. The applicability of this reaction is demonstrated by a broad substrate scope (>50 examples) that focuses on functional group tolerance and sites that are affected by metal-catalyzed hydrogenation (alkenes, alkynes, protecting groups).


Asunto(s)
Alquenos , Agua , Hidrogenación , Catálisis , Hidrógeno
15.
Chemistry ; 29(59): e202302079, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37530503

RESUMEN

The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH2 Br and CH2 OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics (1 H, 13 C NMR, and high-resolution mass spectra) corresponded to the proposed structures. The photocourier molecules demonstrated absorption with high values of coefficient of molar extinction, exhibited contrasting green emission, and showed good dark stability. The mechanism of the photorelease was investigated through spectral analysis, HPLC-HRMS, and supported by TD-DFT calculations. The photoheterolysis and elimination of carboxylic acids were proved to occur in the excited state, yielding a carbocation as an intermediate moiety. The fluorophore structure provided stability to the carbocation through the delocalization of the positive charge via resonance structures. Viability assessment of Vero cells using the MTT-test confirmed the weak cytotoxicity of prodrugs without irradiation and it increase upon UV-light.

16.
Chemistry ; 29(41): e202301312, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37283481

RESUMEN

p-Toluenesulfonyl (Tosyl) and nitrobenzenesulfonyl (Nosyl) are two of the most common sulfonyl protecting groups for amines in contemporary organic synthesis. While p-toluenesulfonamides are known for their high stability/robustness, their use in multistep synthesis is plagued by difficult removal. Nitrobenzenesulfonamides, on the other hand, are easily cleaved but display limited stability to various reaction conditions. In an effort to resolve this predicament, we herein present a new sulfonamide protecting group, which we term Nms. Initially developed through in silico studies, Nms-amides overcome these previous limitations and leave no room for compromise. We have investigated the incorporation, robustness and cleavability of this group and found it to be superior to traditional sulfonamide protecting groups in a broad range of case studies.

17.
Chemistry ; 29(64): e202302288, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37639512

RESUMEN

Human milk oligosaccharides (HMO) have emerged as a very active area of research in glycoscience and nutrition. HMO are involved in the early development of infants and may help to prevent certain diseases. The development of chemical methods for obtaining individual HMO aids the global effort dedicated to understanding the roles of these biomolecules. Reported herein is the chemical synthesis of two common core hexasaccharides found in human milk, i. e. para-lacto-N-hexaose (pLNH) and para-lacto-N-neohexaose (pLNnH). After screening multiple leaving groups and temporary protecting group combinations, a 3+3 convergent coupling strategy was found to work best for obtaining these linear glycans.


Asunto(s)
Leche Humana , Oligosacáridos , Lactante , Humanos , Leche Humana/química , Oligosacáridos/química , Polisacáridos/análisis , Hidrolasas
18.
Chemistry ; 29(36): e202300820, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37040098

RESUMEN

The synthesis of acetals in acidic natural deep eutectic solvents (NADES), in which the solvent itself participates in the catalytic promotion of the reaction, is reported herein. The reaction is performed under feasible conditions, open air, without the need of external additives, catalysts or water-removing techniques, and it is wide in scope. The products are easily recovered, and the reaction medium is fully recycled and reused without weakening of its catalytic activity after 10 times. Remarkably, the entire process has been realized on gram scale.

19.
Chemistry ; 29(46): e202301253, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265454

RESUMEN

Diselenide-selenoester ligations are increasingly used for the synthesis of proteins. Excellent ligation rates, even at low concentrations, in combination with mild and selective deselenization conditions can overcome some of the most severe challenges in chemical protein synthesis. Herein, the versatile multicomponent synthesis and application of a new ligation auxiliary that combines a photocleavable scaffold with the advantages of selenium-based ligation strategies are presented. Its use was investigated with respect to different ligation junctions and describe a novel para-methoxybenzyl deprotection reaction for the selenol moiety. The glycine-based auxiliary enabled successful synthesis of the challenging target protein G-CSF.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Proteínas/química
20.
J Pept Sci ; 29(12): e3525, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37230473

RESUMEN

The synthesis of Gobichelin-A, a naturally occurring mixed-ligand siderophore isolated from Streptomyces sp. NRRL F-4415, is described. The target molecule was planned to be synthesized by a convergent process involving the combination of two halves, Gob-A 1st half and Gob-A 2nd half, at the prefinal stage of the synthetic route. By adopting this method, fully protected Gobichelin-A was synthesized in excellent yield.


Asunto(s)
Sideróforos , Streptomyces , Sideróforos/química , Ligandos , Streptomyces/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda