Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Angew Chem Int Ed Engl ; 63(5): e202313947, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37974542

RESUMEN

The possible internal dynamics of non-isotope-labeled small-molecule ligands inside a target protein is inherently difficult to capture. Whereas high crystallographic temperature factors can denote either static disorder or motion, even moieties with very low B-factors can be subject to vivid motion between symmetry-related sites. Here we report the experimental identification of internal µs timescale dynamics of a high-affinity, natural-abundance ligand tightly bound to the enzyme human carbonic anhydrase II (hCAII) even within a crystalline lattice. The rotamer jumps of the ligand's benzene group manifest themselves both, in solution and fast magic-angle spinning solid-state NMR 1 H R1ρ relaxation dispersion, for which we obtain further mechanistic insights from molecular-dynamics (MD) simulations. The experimental confirmation of rotameric jumps in bound ligands within proteins in solution or the crystalline state may improve understanding of host-guest interactions in biology and supra-molecular chemistry and may facilitate medicinal chemistry for future drug campaigns.


Asunto(s)
Proteínas , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominio Catalítico , Ligandos , Proteínas/química , Espectroscopía de Resonancia Magnética
2.
J Biomol NMR ; 77(5-6): 229-245, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37943392

RESUMEN

1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.


Asunto(s)
Amidas , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética/métodos , Amidas/química , Automatización , Protones
3.
Chemistry ; 29(1): e202202616, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36181715

RESUMEN

Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.


Asunto(s)
Péptidos , Proteínas , Proteínas/química , Espectroscopía de Resonancia Magnética , Péptidos/análisis , Polisacáridos/química , Pared Celular/química
4.
Solid State Nucl Magn Reson ; 125: 101861, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36989552

RESUMEN

A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.


Asunto(s)
Proteínas , Protones , Deuterio/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética/métodos
5.
J Biomol NMR ; 76(5-6): 197-212, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36149571

RESUMEN

Site-specific heterogeneity of solid protein samples can be exploited as valuable information to answer biological questions ranging from thermodynamic properties determining fibril formation to protein folding and conformational stability upon stress. In particular, for proteins of increasing molecular weight, however, site-resolved assessment without residue-specific labeling is challenging using established methodology, which tends to rely on carbon-detected 2D correlations. Here we develop purely chemical-shift-based approaches for assessment of relative conformational heterogeneity that allows identification of each residue via four chemical-shift dimensions. High dimensionality diminishes the probability of peak overlap in the presence of multiple, heterogeneously broadened resonances. Utilizing backbone dihedral-angle reconstruction from individual contributions to the peak shape either via suitably adapted prediction routines or direct association with a relational database, the methods may in future studies afford assessment of site-specific heterogeneity of proteins without site-specific labeling.


Asunto(s)
Proteínas , Protones , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Pliegue de Proteína
6.
J Biomol NMR ; 76(1-2): 23-28, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997409

RESUMEN

Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium's large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H-13C-1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H-15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.


Asunto(s)
Proteínas , Protones , Deuterio/química , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química
7.
Angew Chem Int Ed Engl ; 61(33): e202203319, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35712982

RESUMEN

Membrane proteins are known to exert many essential biological functions by forming complexes in cell membranes. An example refers to the ß-barrel assembly machinery (BAM), a 200 kDa pentameric complex containing BAM proteins A-E that catalyzes the essential process of protein insertion into the outer membrane of gram-negative bacteria. While progress has been made in capturing three-dimensional structural snapshots of the BAM complex, the role of the lipoprotein BamC in the complex assembly in functional lipid bilayers has remained unclear. We have devised a component-selective preparation scheme to directly study BamC as part of the entire BAM complex in lipid bilayers. Combination with proton-detected solid-state NMR methods allowed us to probe the structure, dynamics, and supramolecular topology of full-length BamC embedded in the entire complex in lipid bilayers. Our approach may help decipher how individual proteins contribute to the dynamic formation and functioning of membrane protein complexes in membranes.


Asunto(s)
Membrana Dobles de Lípidos , Lipoproteínas , Proteínas de la Membrana , Proteínas de Escherichia coli , Membrana Dobles de Lípidos/química , Proteínas Ligadas a Lípidos , Lipoproteínas/metabolismo , Pliegue de Proteína
8.
J Biomol NMR ; 75(10-12): 417-427, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34813018

RESUMEN

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


Asunto(s)
Proteínas , Protones , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
9.
Nanotechnology ; 32(35)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038895

RESUMEN

High energy and high flux protons are used in proton therapy and the impact of proton radiation is a major reliability concern for electronics and solar cells in low earth orbit as well as in the trapped belts. Carbon nanotubes (CNTs), due to their unique characteristics, have been considered for the construction of proton and other radiation sensors. Here, a single wall CNT based proton sensor was fabricated on FR4 substrate and its response to 150 MeV proton irradiation was studied. The change in the resistance of the nanotubes upon irradiation is exploited as the sensing mechanism and the sensor shows good sensitivity to proton radiation. Proton radiation induces dissociation of ambient oxygen, followed by the adsorption of oxygen species on the nanotube surface, which influences its electrical characteristics. Since the nanotube film is thin and the 150 MeV protons are expected to penetrate into and interact with the substrate, control experiments were conducted to study the impact on FR4 substrate without the nanotubes. The dielectric loss tangent or dissipation factor of FR4 increases after irradiation due to an increase in the cross-linking of the resin arising from the degradation of the polymer network.

10.
Angew Chem Int Ed Engl ; 60(40): 21778-21783, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34273230

RESUMEN

We present a toolbox for the rapid characterisation of powdered samples of paramagnetic metal-organic frameworks at natural abundance by 1 H-detected solid-state NMR. Very fast MAS rates at room and cryogenic temperatures and a set of tailored radiofrequency irradiation schemes help overcome the sensitivity and resolution limits often associated with the characterisation of MOF materials. We demonstrate the approach on DUT-8(Ni), a framework containing Ni2+ paddle-wheel units which can exist in two markedly different architectures. Resolved 1 H and 13 C resonances of organic linkers are detected and assigned in few hours with only 1-2 mg of sample at natural isotopic abundance, and used to rapidly extract information on structure and local internal dynamics of the assemblies, as well as to elucidate the metal electronic properties over an extended temperature range. The experiments disclose new possibilities for describing local and global structural changes and correlating them to electronic and magnetic properties of the assemblies.

11.
J Biomol NMR ; 74(4-5): 247-256, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32185644

RESUMEN

Hydrogen bonds are essential for protein structure and function, making experimental access to long-range interactions between amide protons and heteroatoms invaluable. Here we show that measuring distance restraints involving backbone hydrogen atoms and carbonyl- or α-carbons enables the identification of secondary structure elements based on hydrogen bonds, provides long-range contacts and validates spectral assignments. To this end, we apply specifically tailored, proton-detected 3D (H)NCOH and (H)NCAH experiments under fast magic angle spinning (MAS) conditions to microcrystalline samples of SH3 and GB1. We observe through-space, semi-quantitative correlations between protein backbone carbon atoms and multiple amide protons, enabling us to determine hydrogen bonding patterns and thus to identify ß-sheet topologies and α-helices in proteins. Our approach shows the value of fast MAS and suggests new routes in probing both secondary structure and the role of functionally-relevant protons in all targets of solid-state MAS NMR.


Asunto(s)
Enlace de Hidrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Estructura Secundaria de Proteína , Amiloide/química , Elastasa Pancreática/química , Pliegue de Proteína , Protones , Dominios Homologos src
12.
J Biomol NMR ; 74(4-5): 229-237, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31894471

RESUMEN

Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , N-Formilmetionina Leucil-Fenilalanina/química , Isótopos de Nitrógeno
13.
Chembiochem ; 21(10): 1453-1460, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31850615

RESUMEN

Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1 H-detected 1 H,15 N and 3D 1 H,13 C,15 N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.


Asunto(s)
Hepacivirus/metabolismo , Lípidos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Protones , Proteínas no Estructurales Virales/análisis , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Conformación Proteica , Conformación Proteica en Hélice alfa
14.
Mol Pharm ; 17(2): 674-682, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31891271

RESUMEN

Magic angle spinning (MAS) NMR is a powerful method for the study of pharmaceutical compounds, and probes with spinning frequencies above 100 kHz enable an atomic-resolution analysis of sub-micromole quantities of fully protonated solids. Here, we present an ultrafast NMR crystallography approach for structural characterization of organic solids at MAS frequencies of 100-111 kHz. We assess the efficiency of 1H-detected experiments in the solid state and demonstrate the utility of 2D and 3D homo- and heteronuclear correlation spectra for resonance assignments. These experiments are demonstrated for an amino acid, U-13C,15N-histidine, and also for the significantly larger, natural product Posaconazole, an antifungal compound investigated at natural abundance. Our results illustrate the power for characterizing organic molecules, enabled by exploiting the increased 1H resolution and sensitivity at MAS frequencies above 100 kHz.


Asunto(s)
Antifúngicos/química , Histidina/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Triazoles/química , Isótopos de Carbono , Cristalografía por Rayos X/métodos , Hidrógeno/química , Enlace de Hidrógeno , Imagen por Resonancia Magnética/métodos , Isótopos de Nitrógeno , Protones
15.
Angew Chem Int Ed Engl ; 59(6): 2380-2384, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657097

RESUMEN

Narrow proton signals, high sensitivity, and efficient coherence transfers provided by fast magic-angle spinning at high magnetic fields make automated projection spectroscopy feasible for the solid-state NMR analysis of proteins. We present the first ultrahigh dimensional implementation of this approach, where 5D peak lists are reconstructed from a number of 2D projections for protein samples of different molecular sizes and aggregation states, which show limited dispersion of chemical shifts or inhomogeneous broadenings. The resulting datasets are particularly suitable to automated analysis and yield rapid and unbiased assignments of backbone resonances.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Automatización , Marcaje Isotópico , Superóxido Dismutasa/química , Microglobulina beta-2/química
16.
J Biomol NMR ; 73(1-2): 19-29, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30680507

RESUMEN

We report linewidth and proton T1, T1ρ and T2' relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency. For microcrystalline fully-protonated ubiquitin, inhomogeneous contributions are only a minor part of the proton linewidth, and at 126 kHz MAS coherent effects are still dominating. We furthermore present site-specific proton relaxation rate constants during a spinlock at 126 kHz MAS, as well as MAS-dependent bulk T1ρ (1HN).


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Resonancia Magnética Nuclear Biomolecular/instrumentación , Proteínas , Protones , Ubiquitina/química
17.
Chemphyschem ; 20(5): 672-679, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30663843

RESUMEN

Proton spectroscopy in solid-state NMR on catalytic materials offers new opportunities in structural characterization, in particular of reaction products of catalytic reactions such as hydrogenation reactions. Unfortunately, the 1 H NMR line widths in magic-angle spinning solid-state spectra are often broadened by an incomplete averaging of 1 H-1 H dipolar couplings. We herein discuss two model compounds, namely the H2 -splitting products of two phosphane-borane Frustrated Lewis Pairs (FLPs), to study potentials and limitations of proton solid-state NMR experiments employing magic-angle spinning frequencies larger than 100 kHz at a static magnetic field strength of 20.0 T. The 1 H lines are homogeneously broadened as illustrated by spin-echo decay experiments. We study two structurally similar materials which however show significant differences in 1 H line widths which we explain by differences in their 1 H-1 H dipolar networks. We discuss the benefit of fast MAS experiments up to 110 kHz to detect the resonances of the H+ /H- pair in the hydrogenation products of FLPs.

18.
Methods ; 138-139: 26-38, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29627359

RESUMEN

The amyloid fold is structurally characterized by a typical cross-ß architecture, which is under debate to represent an energy-favourable folding state that many globular or natively unfolded proteins can adopt. Being initially solely associated with amyloid fibrils observed in the propagation of several neurodegenerative disorders, the discovery of non-pathological (or "functional") amyloids in many native biological processes has recently further intensified the general interest invested in those cross-ß supramolecular assemblies. The insoluble and non-crystalline nature of amyloid fibrils and their usually inhomogeneous appearance on the mesoscopic level pose a challenge to biophysical techniques aiming at an atomic-level structural characterization. Solid-state NMR spectroscopy (SSNMR) has granted breakthroughs in structural investigations on amyloid fibrils ranging from the assessment of the impact of polymorphism in disease development to the 3D atomic structure determination of amyloid fibrils. First landmark studies towards the characterization of atomic structures and interactions involving functional amyloids have provided new impulses in the understanding of the role of the amyloid fold in native biological functions. Over the last decade many strategies have been developed in protein isotope labelling, NMR resonance assignment, distance restraint determination and 3D structure calculation of amyloid fibrils based on SSNMR approaches. We will here discuss the emerging concepts and state-of-the-art methods related to the assessment of amyloid structures and interactions involving amyloid entities by SSNMR.


Asunto(s)
Amiloide/química , Resonancia Magnética Nuclear Biomolecular/métodos , Humanos , Marcaje Isotópico , Conformación Proteica
19.
Proc Natl Acad Sci U S A ; 113(33): 9187-92, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27489348

RESUMEN

Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Pliegue de Proteína , Protones
20.
Angew Chem Int Ed Engl ; 58(17): 5758-5762, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30688395

RESUMEN

Solid-state NMR spectroscopy has recently enabled structural biology with small amounts of non-deuterated proteins, largely alleviating the classical sample production demands. Still, despite the benefits for sample preparation, successful and comprehensive characterization of complex spin systems in the few cases of higher-molecular-weight proteins has thus far relied on traditional 13 C-detected methodology or sample deuteration. Herein we show for a 29 kDa carbonic anhydrase:acetazolamide complex that different aspects of solid-state NMR assessment of a complex spin system can be successfully accessed using a non-deuterated, 500 µg sample in combination with adequate spectroscopic tools. The shown access to protein structure, protein dynamics, as well as biochemical parameters in amino acid sidechains, such as histidine protonation states, will be transferable to proteins that are not expressible in E. coli.


Asunto(s)
Deuterio/química , Espectroscopía de Resonancia Magnética/métodos , Humanos , Protones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda