Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
Annu Rev Phys Chem ; 75(1): 329-346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38382565

RESUMEN

Photon upconversion is a process that combines low-energy photons to form useful high-energy photons. There are potential applications in photovoltaics, photocatalysis, biological imaging, etc. Semiconductor quantum dots (QDs) are promising for the absorption of these low-energy photons due to the high extinction coefficient of QDs, especially in the near infrared (NIR). This allows the intriguing use of diffuse light sources such as solar irradiation. In this review, we describe the development of this organic-QD upconversion platform based on triplet-triplet annihilation, focusing on the dark exciton in QDs with triplet character. Then we introduce the underlying energy transfer steps, starting from QD triplet photosensitization, triplet exciton transport, triplet-triplet annihilation, and ending with the upconverted emission. Design principles to improve the total upconversion efficiency are presented. We end with limitations in current reports and proposed future directions. This review provides a guide for designing efficient organic-QD upconversion platforms for future applications, including overcoming the Shockley-Queisser limit for more efficient solar energy conversion, NIR-based phototherapy, and diagnostics in vivo.

2.
Exp Cell Res ; 436(1): 113958, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325585

RESUMEN

Cerebral amyloid angiopathy (CAA) is a disease in which amyloid ß (Aß) is deposited in the cerebral blood vessels, reducing compliance, tearing and weakening of vessel walls, leading to cerebral hemorrhage. The mechanisms by which Aß leads to focal wall fragmentation and intimal damage are not well understood. We analyzed the motility of human brain microvascular endothelial cells (hBMECs) in real-time using a wound-healing assay. We observed the suppression of cell migration by visualizing Aß aggregation using quantum dot (QD) nanoprobes. In addition, using QD nanoprobes and a SiR-actin probe, we simultaneously observed Aß aggregation and F-actin organization in real-time for the first time. Aß began to aggregate at the edge of endothelial cells, reducing cell motility. In addition, Aß aggregation disorganized the actin cytoskeleton and induced abnormal actin aggregation. Aß aggregated actively in the anterior group, where cell motility was active. Our findings may be a first step toward explaining the mechanism by which Aß causes vascular wall fragility, bleeding, and rebleeding in CAA.


Asunto(s)
Péptidos beta-Amiloides , Células Endoteliales , Humanos , Péptidos beta-Amiloides/farmacología , Actinas , Encéfalo , Citoesqueleto de Actina
3.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215478

RESUMEN

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

4.
Nano Lett ; 24(23): 7019-7024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38808680

RESUMEN

We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.

5.
Nano Lett ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990690

RESUMEN

Environmentally friendly InP-based quantum dots (QDs) are promising for light-emitting diodes (LEDs) and display applications. So far, the synthesis of highly emitting InP-based QDs via safe and economically viable amine-phosphine remains a challenge. Herein, we report the synthesis of amine-phosphine based InP/ZnSe/ZnS QDs by introducing an alloyed oxidation-free In-ZnSe transition layer (TL) at the core-shell interface. The TL not only has the essential function of preventing oxidation of the core and relieving interfacial strain but also results in oriented epitaxial growth of shell. The alloyed TL significantly mitigates the nonradiative recombination at core-shell interfacial trap states, thereby boosting the photoluminescence (PL) efficiency of the QDs up to 98%. Also, the Auger recombination is suppressed, extending the biexciton lifetime from 60 to 100 ps. The electroluminescence device based on the InP-based QDs shows a high external quantum efficiency over 10%, further demonstrating high quality QDs synthesized by this process.

6.
Nano Lett ; 24(5): 1761-1768, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261791

RESUMEN

Colloidal quantum dots (QDs) are excellent luminescent nanomaterials for many optoelectronic applications. However, photoluminescence blinking has limited their practical use. Coupling QDs to plasmonic nanostructures shows potential in suppressing blinking. However, the underlying mechanism remains unclear and debated, hampering the development of bright nonblinking dots. Here, by deterministically coupling a QD to a plasmonic nanocavity, we clarify the mechanism and demonstrate unprecedented single-QD brightness. In particular, we report for the first time that a blinking QD could obtain nonblinking photoluminescence with a blinking lifetime through coupling to the nanocavity. We show that the plasmon-enhanced radiative decay outcompetes the nonradiative Auger process, enabling similar quantum yields for charged and neutral excitons in the same dot. Meanwhile, we demonstrate a record photon detection rate of 17 MHz from a colloidal QD, indicating an experimental photon generation rate of more than 500 MHz. These findings pave the way for ultrabright nonblinking QDs, benefiting diverse QD-based applications.

7.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38395430

RESUMEN

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

8.
Nano Lett ; 24(7): 2421-2427, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319957

RESUMEN

We demonstrate excitatory and inhibitory properties in a single heterostructure consisting of two quantum dots/graphene synaptic elements using linearly polarized monochromatic light. Perovskite quantum dots and PbS quantum dots were used to increase and decrease photocurrent weights, respectively. The polarization-dependent photocurrent was realized by adding a polarizer in the middle of the PbS quantum dots/graphene and perovskite quantum dots/graphene elements. When linearly polarized light passed through the polarizer, both the lower excitatory and upper inhibitory devices were activated, with the lower device with the stronger response dominating to increase the current weight. In contrast, the polarized light was blocked by the polarizer, and the above device was only operated, reducing the current weight. Furthermore, two orthogonal polarizations of light were used to perform the sequential processes of potentiation and habituation. By adjustment of the polarization angle of light, not only the direction of the current weight but also its level was altered.

9.
Nano Lett ; 24(19): 5783-5790, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695397

RESUMEN

Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.

10.
Nano Lett ; 24(26): 8089-8097, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899810

RESUMEN

To simulate a topological neural network handling weak signals via stochastic resonance (SR), it is necessary to introduce an inherent nonlinearity into nanoscale devices. We use the self-assembly method to successfully fabricate a phase-change quantum-dot string (PCQDS) crossing Pd/Nb:AlNO/AlNO/Nb:AlNO/Pd multilayer. The inherent nonlinearity of phase change couples with electron tunneling so that PCQDS responds to a long signal sequence in a modulated output style, in which the pulse pattern evolves to that enveloped by two sets of periodic wave characterized by neural action potential. We establish an SR mode consisting of several two-state systems in which dissipative tunneling is coupled to environment. Size oscillations owing to NbO QDs adaptively adjust barriers and wells, such that tunneling can be periodically modulated by either asymmetric energy or local temperature. When the external periodic signals are applied, the system first follows the forcing frequency. Subsequently, certain PCQDs oscillate independently and consecutively to produce complicated frequency and amplitude modulations.

11.
Nano Lett ; 24(22): 6767-6777, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771956

RESUMEN

Efforts to prolong the blood circulation time and bypass immune clearance play vital roles in improving the therapeutic efficacy of nanoparticles (NPs). Herein, a multifunctional nanoplatform (BPP@RTL) that precisely targets tumor cells is fabricated by encapsulating ultrasmall phototherapeutic agent black phosphorus quantum dot (BPQD), chemotherapeutic drug paclitaxel (PTX), and immunomodulator PolyMetformin (PM) in hybrid membrane-camouflaged liposomes. Specifically, the hybrid cell membrane coating derived from the fusion of cancer cell membrane and red blood cell membrane displays excellent tumor targeting efficiency and long blood circulation property due to the innate features of both membranes. After collaboration with aPD-L1-based immune checkpoint blockade therapy, a boosted immunotherapeutic effect is obtained due to elevated dendritic cell maturation and T cell activation. Significantly, laser-irradiated BPP@RTL combined with aPD-L1 effectively eliminates primary tumors and inhibits lung metastasis in 4T1 breast tumor model, offering a promising treatment plan to develop personalized antitumor strategy.


Asunto(s)
Inmunoterapia , Paclitaxel , Fósforo , Puntos Cuánticos , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Animales , Fósforo/química , Ratones , Paclitaxel/química , Paclitaxel/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Femenino , Humanos , Línea Celular Tumoral , Liposomas/química , Nanopartículas/química , Ratones Endogámicos BALB C
12.
Nano Lett ; 24(26): 7927-7933, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885648

RESUMEN

In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin-orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin-orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin-orbital states.

13.
Nano Lett ; 24(5): 1594-1601, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38134416

RESUMEN

Blue quantum dot (QD) light-emitting diodes (QLEDs) exhibit unsatisfactory operational stability and electroluminescence (EL) properties due to severe nonradiative recombination induced by large numbers of dangling bond defects and charge imbalance in QD. Herein, dipolar aromatic amine-functionalized molecules with different molecular polarities are employed to regulate charge transport and passivate interfacial defects between QD and the electron transfer layer (ETL). The results show that the stronger the molecular polarity, especially with the -CF3 groups possessing a strong electron-withdrawing capacity, the more effective the defect passivation of S and Zn dangling bonds at the QD surface. Moreover, the dipole interlayer can effectively reduce electron injection into QD at high current density, enhancing charge balance and mitigating Joule heat. Finally, blue QLEDs exhibit a peak external quantum efficiency (EQE) of 21.02% with an operational lifetime (T50 at 100 cd m-2) exceeding 4000 h.

14.
Nano Lett ; 24(5): 1816-1824, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270101

RESUMEN

Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.


Asunto(s)
Nanosferas , Neoplasias , Puntos Cuánticos , Humanos , Detección Precoz del Cáncer , Antígeno B7-H1 , Inmunoterapia , Aprendizaje Automático , Oligonucleótidos , ADN
15.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38620181

RESUMEN

Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens' metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens' metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.

16.
Nano Lett ; 24(10): 3237-3242, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38437641

RESUMEN

Traditional semiconductor quantum dots of groups II-VI are key ingredients of next-generation display technology. Yet, the majority of them contain toxic heavy-metal elements, thus calling for alternative light-emitting materials. Herein, we have explored three novel categories of multicomponent compounds, namely, tetragonal II-III2-VI4 porous ternary compounds, cubic I2-II3-VI4 ternary compounds, and cubic I-II-III3-V4 quaternary compounds. This is achieved by judicious introduction of a "super atom" perspective and concurrently varying the solid-state lattice packing of involved super atoms or the population of surrounding counter cations. Based on first-principles calculations of 392 candidate materials with designed crystal structures, 53 highly stable materials have been screened. Strikingly, 34 of them are direct-bandgap semiconductors with emitting wavelengths covering the near-infrared and visible-light regions. This work provides a comprehensive database of highly efficient light-emitting materials, which may be of interest for a broad field of optoelectronic applications.

17.
Nano Lett ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832838

RESUMEN

Theoretically, tandem quantum-dot light-emitting diodes (QLEDs) hold great promise for achieving both high efficiency and high stability in display applications. However, in practice, their operational stability remains considerably inferior to that of state-of-the-art devices. In this study, we developed a new tandem structure with optimal electrical and optical performance to simultaneously improve the efficiency and stability of tandem QLEDs. Electrically, upon development of a barrier-free interconnecting layer enabled by an indium-zinc oxide bridging layer and a conductive ZnMgO layer, the driving voltage of the tandem QLEDs is remarkably reduced. Optically, upon development of a top-emitting structure and optimization of the cavity length guided by a theoretical simulation, a maximum light extraction efficiency is achieved. As a result, the red tandem QLEDs exhibit a maximum external quantum efficiency of 49.01% and a T95 lifetime at 1000 cd/m2 of >50 000 h, making them one of the most efficient and stable QLEDs ever reported.

18.
Nano Lett ; 24(4): 1254-1260, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230959

RESUMEN

The photolithographic patterning of fine quantum dot (QD) films is of great significance for the construction of QD optoelectronic device arrays. However, the photolithography methods reported so far either introduce insulating photoresist or manipulate the surface ligands of QDs, each of which has negative effects on device performance. Here, we report a direct photolithography strategy without photoresist and without engineering the QD surface ligands. Through cross-linking of the surrounding semiconductor polymer, QDs are spatially confined to the network frame of the polymer to form high-quality patterns. More importantly, the wrapped polymer incidentally regulates the energy levels of the emitting layer, which is conducive to improving the hole injection capacity while weakening the electron injection level, to achieve balanced injection of carriers. The patterned QD light-emitting diodes (with a pixel size of 1.5 µm) achieve a high external quantum efficiency of 16.25% and a brightness of >1.4 × 105 cd/m2. This work paves the way for efficient high-resolution QD light-emitting devices.

19.
Nano Lett ; 24(4): 1294-1302, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230964

RESUMEN

The formation and transformation of colloidal semiconductor clusters remain poorly understood. With CdS as a model system, we show that, in the reaction of cadmium myristate (Cd(MA)2) and S powder in 1-octadecene (ODE), clusters form in the prenucleation stage of quantum dots (QDs). Called precursor compounds (PCs), the clusters can transform to magic-size clusters (MSCs) in reaction at a relatively high temperature (MSC-322 displaying optical absorption peaking at 322 nm) or in a dispersion at room temperature (MSC-360). When the reaction temperature is increased, PC-360 forms at 140 °C, while PC-322 and MSC-322 form at 180 °C. In a dispersion of cyclohexane and octylamine, MSC-322 transforms to MSC-360 via MSC-345. The MSC-345 to MSC-360 transformation displays continuous and discontinuous shifts in the optical absorption. The PCs and MSCs are a group of isomers. The present findings bring insight into the cluster formation and isomerization in the prenucleation stage of QDs and in a dispersion.

20.
Nano Lett ; 24(1): 61-66, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113396

RESUMEN

The decay of excited states via radiative and nonradiative paths is well understood in molecules and bulk semiconductors but less so in nanocrystals. Here, we perform time-resolved photoluminescence (t-PL) experiments on CsPbBr3 metal-halide perovskite nanocrystals, with a time resolution of 3 ps, sufficient to observe the decay of both excitons and biexcitons as a function of temperature. The striking result is that the radiative rate constant of the single exciton increases at low temperatures with an exponential functional form, suggesting quantum coherent effects with dephasing at high temperatures. The opposing directions of the radiative and nonradiative decay rate constants enable enhanced brightening of PL from excitons to biexcitons due to quantum effects, promoting a faster approach to the quantum theoretical limits of light emission. Ab initio quantum dynamics simulations reproduce the experimental observations of radiation controlled by quantum spatial coherence enhanced at low temperatures.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda