Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275391

RESUMEN

In this paper, we combine simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) with rate-splitting multiple access (RSMA) technology and investigate the ergodic rate performance of an STAR-assisted RSMA system. Considering the discrete phase shifts of the STAR-RIS in practice, the downlink performance of STAR-RIS-assisted RSMA with discrete phase shifts is compared to that with continuous phase shifts. Firstly, the cumulative distribution function of signal-to-interference-plus-noise ratio (SINR) of users is analyzed. Then, the total ergodic rate of the system and its approximate closed-form solution are, respectively, derived based on the cumulative distribution function of users. The simulation results validate the effectiveness of the theoretical analysis, showing good agreement between the derived theoretical ergodic rate and the corresponding simulations. Although the system performance with discrete phase shifts is inferior to that with continuous phase shifts due to quantization errors, the performance of the continuous phase shift system is well approximated when the quantization bit of the phase shift system reaches 3 in the simulations. Additionally, the impact of the number of STAR-RIS elements on the system's performance is analyzed.

2.
Sensors (Basel) ; 24(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38894213

RESUMEN

In this study, we investigated reconfigurable intelligent surface (RIS)-assisted device-to-device (D2D) communication systems over Nakagami-m fading channels. To enhance the reliability of RIS-assisted D2D communications, we utilized the rate-splitting multiple access (RSMA) technique to maximize the achievable ergodic rate for our considered systems. Specifically, both devices decoded the common symbol by treating private symbols as interference, and then each private symbol was decoded by treating the other as interference. In order to maximize the achievable ergodic rate at the destination, we analyzed the achievable ergodic rate of the RIS link and the D2D link, and the destination jointly decoded both symbols transmitted from the source and device by involving the maximum ratio combination (MRC). We obtained a closed-form expression for the achievable ergodic rate of the proposed RIS-assisted D2D communication system. Finally, we investigated the influence of power allocation factors and the number of reflective elements on the achievable ergodic rate. As seen by the numerical results, there was a good match between the analysis and simulation results, as well as significant superiority compared with existing works.

3.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112273

RESUMEN

The reconfigurable intelligent surface (RIS) and rate-splitting multiple access (RSMA) are considered as promising technologies for the beyond Fifth-Generation (B5G) and Sixth-Generation (6G) wireless systems by controlling the propagation environment, which attenuates the transmitted signal, and by managing the interference by splitting the user message into common and private messages. Because conventional RIS elements have each impedance connected to the ground, the sum-rate performance improvement of the RIS is limited. Therefore, the new RISs, which have impedance elements connected to each other, have been proposed recently. To be more adaptive to each channel, the optimization of the grouping of the RIS elements is required. Furthermore, since the solution of the optimal rate-splitting (RS) power-splitting ratio is complex, the value should be simply optimized to be more practical in the wireless system. In this paper, the grouping scheme of the RIS elements according to the user scheduling and the solution of the RS power-splitting ratio based on fractional programming (FP) are proposed. The simulation results showed that the proposed RIS-assisted RSMA system achieved a high sum-rate performance compared to the conventional RIS-assisted spatial-division multiple access (SDMA) system. Therefore, the proposed scheme can perform adaptively for the channel and has a flexible interference management. Furthermore, it can be a more suitable technique for B5G and 6G.

4.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765915

RESUMEN

To accommodate the requirements of extensive coverage and ubiquitous connectivity in 6G communications, satellite plays a more significant role in it. As users and devices explosively grow, new multiple access technologies are called for. Among the new candidates, rate splitting multiple access (RSMA) shows great potential. Since satellites are power-limited, we investigate the energy-efficient resource allocation in the integrated satellite terrestrial network (ISTN)-adopting RSMA scheme in this paper. However, this non-convex problem is challenging to solve using conventional model-based methods. Because this optimization task has a quality of service (QoS) requirement and continuous action/state space, we propose to use constrained soft actor-critic (SAC) to tackle it. This policy-gradient algorithm incorporates the Lagrangian relaxation technique to convert the original constrained problem into a penalized unconstrained one. The reward is maximized while the requirements are satisfied. Moreover, the learning process is time-consuming and unnecessary when little changes in the network. So, an on-off mechanism is introduced to avoid this situation. By calculating the difference between the current state and the last one, the system will decide to learn a new action or take the last one. The simulation results show that the proposed algorithm can outperform other benchmark algorithms in terms of energy efficiency while satisfying the QoS constraint. In addition, the time consumption is lowered because of the on-off design.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda