Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Trends Genet ; 40(7): 564-579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677904

RESUMEN

Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.


Asunto(s)
Recombinación Genética , Cromosomas Sexuales , Cromosomas Sexuales/genética , Animales , Humanos , Evolución Molecular , Masculino , Femenino , Selección Genética/genética , Mutación , Compensación de Dosificación (Genética) , Modelos Genéticos
2.
Trends Genet ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880723

RESUMEN

Genomic information is folded in a three-dimensional (3D) structure, a rarely explored evolutionary driver of speciation. Technological advances now enable the study of 3D genome structures (3DGSs) across the Tree of Life. At the onset of 3D speciation genomics, we discuss the putative roles of 3DGSs in speciation.

3.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35325190

RESUMEN

Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.


Asunto(s)
Cromosomas Fúngicos , Genes del Tipo Sexual de los Hongos , Codón/genética , Evolución Molecular , Recombinación Genética , Cromosomas Sexuales
4.
Mol Ecol ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489260

RESUMEN

Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.

5.
Genome ; 66(7): 175-192, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36944224

RESUMEN

The North American (NA) Atlantic salmon typically has 27 pairs of chromosomes, whereas the European (EU) subspecies typically has 29. We investigated within-family recombination within three previously identified chromosome rearrangements (Ssa01p/23, Ssa08/29, and Ssa26/28) in NA Atlantic salmon by creating high-density linkage maps using a custom 50K SNP chip developed for the Saint John River aquaculture strain. Linkage maps created for individual purebred and EU hybrid parents in 10 full-sibling families averaged 14 337 SNPs per cross, covering 43 033 SNPs from the 50K SNP chip. Chromosomal translocation Ssa01p/23 was fixed except in one hybrid female map. In contrast, fusion Ssa08/29 was present in maps in 4 out of 10 females and 8 out of 10 males, whereas fusion Ssa26/28 was present in maps in 6 out of 10 females and 8 out of 10 males. The orientation of Ssa08/29 differed from the previous map; the short arm of the metacentric Ssa08 was fused to the centromere of the acrocentric Ssa29. We detected large regions of recombination suppression in female maps at the fusion of Ssa08 to Ssa29. This suppression may reduce the impacts of aneuploidy resulting from pairing of fused and unfused chromosomes, thereby allowing the persistence of chromosomal polymorphisms in this population.


Asunto(s)
Salmo salar , Humanos , Masculino , Animales , Femenino , Salmo salar/genética , Cromosomas , Centrómero , Polimorfismo de Nucleótido Simple , Recombinación Genética , América del Norte , Ligamiento Genético
6.
Chromosome Res ; 30(4): 309-333, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208359

RESUMEN

Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.


Asunto(s)
Fundulidae , Peces Killi , Animales , Humanos , Peces Killi/genética , Fundulidae/genética , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Cromosomas Sexuales/genética , Cromosoma Y/genética , Pueblo Africano , Evolución Molecular
7.
Mol Biol Evol ; 38(2): 619-633, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33022040

RESUMEN

The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.


Asunto(s)
Evolución Biológica , Poecilia/genética , Cromosoma Y , Animales , Femenino , Haplotipos , Masculino , Polimorfismo Genético
8.
J Evol Biol ; 35(12): 1777-1790, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054077

RESUMEN

In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.


Asunto(s)
Genómica , Cromosomas Sexuales , Masculino , Animales , Femenino , Xenopus laevis/genética , Cromosomas Sexuales/genética , Genoma , Evolución Molecular , Cromosoma X
9.
J Evol Biol ; 35(12): 1696-1708, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35834179

RESUMEN

Evolution of a non-recombining sex-specific region on the Y (or W) chromosome (NRY) is a key step in sex chromosome evolution, but how recombination suppression evolves is not well understood. Studies in many different organisms indicated that NRY evolution often involves several expansion steps. Why such NRY expansions occur remains unclear, although it is though that they are likely driven by sexually antagonistic selection. This paper describes a recent NRY expansion due to shift of the pseudoautosomal boundary on the sex chromosomes of a dioecious plant Silene latifolia. The shift resulted in inclusion of at least 16 pseudoautosomal genes into the NRY. This region is pseudoautosomal in closely related Silene dioica and Silene diclinis, indicating that the NRY expansion occurred in S. latifolia after it speciated from the other species ~120 thousand years ago. As S. latifolia and S. dioica actively hybridise across Europe, interspecific gene flow could blur the PAR boundary in these species. The pseudoautosomal genes have significantly elevated genetic diversity (π ~ 3% at synonymous sites), which is consistent with balancing selection maintaining diversity in this region. The recent shift of the PAR boundary in S. latifolia offers an opportunity to study the process of on-going NRY expansion.


Asunto(s)
Silene , Silene/genética , Cromosomas de las Plantas/genética , Genes de Plantas , Recombinación Genética , Cromosomas Sexuales/genética , Evolución Molecular
10.
J Evol Biol ; 35(12): 1619-1634, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35271741

RESUMEN

Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.


Asunto(s)
Basidiomycota , Genes del Tipo Sexual de los Hongos , Recombinación Genética , Evolución Molecular , Hongos/genética , Cromosomas Sexuales
11.
Mol Biol Evol ; 37(3): 799-810, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710681

RESUMEN

Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.


Asunto(s)
Pipidae/fisiología , Cromosomas Sexuales/genética , Animales , Evolución Biológica , Evolución Molecular , Femenino , Flujo Genético , Masculino , Fenotipo , Pipidae/genética , Recombinación Genética , Selección Genética , Procesos de Determinación del Sexo , Diferenciación Sexual
12.
Trends Genet ; 34(7): 492-503, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29716744

RESUMEN

It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution.


Asunto(s)
Recombinación Genética/fisiología , Cromosomas Sexuales/fisiología , Animales , Evolución Biológica , Ligamiento Genético/fisiología
13.
Mol Ecol ; 30(16): 3896-3897, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34218481

RESUMEN

Several recent publications have stated that epistatic fitness interactions cause the fixation of inversions that suppress recombination among the loci involved. Under this type of selection, however, the suppression of recombination in an inversion heterozygote can create a form of heterozygote advantage, which prevents the inversion from becoming fixed by selection. This process has been explicitly modelled by previous workers.


Asunto(s)
Epistasis Genética , Recombinación Genética , Inversión Cromosómica/genética , Heterocigoto , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Selección Genética
14.
BMC Biol ; 18(1): 78, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605573

RESUMEN

BACKGROUND: Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS: Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS: Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Salix/genética
15.
Proc Biol Sci ; 287(1922): 20192613, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126957

RESUMEN

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


Asunto(s)
Variación Genética , Passeriformes/genética , Animales , Especies en Peligro de Extinción , Genética de Población , Genoma , Haplotipos , Humanos , Endogamia , Densidad de Población , Cromosomas Sexuales
16.
BMC Plant Biol ; 19(1): 172, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039740

RESUMEN

BACKGROUND: Angiosperm sex chromosomes, where present, are generally recently evolved. The key step in initiating the development of sex chromosomes from autosomes is the establishment of a sex-determining locus within a region of non-recombination. To better understand early sex chromosome evolution, it is important to determine the process by which recombination is suppressed around the sex determining genes. We have used the dioecious angiosperm kiwifruit Actinidia chinensis var. chinensis, which has an active-Y sex chromosome system, to study recombination rates around the sex locus, to better understand key events in the development of sex chromosomes. RESULTS: We have confirmed the sex-determining region (SDR) in A. chinensis var. chinensis, using a combination of high density genetic mapping and fluorescent in situ hybridisation (FISH) of Bacterial Artificial Chromosomes (BACs) linked to the sex markers onto pachytene chromosomes. The SDR is a subtelomeric non-recombining region adjacent to the nucleolar organiser region (NOR). A region of restricted recombination of around 6 Mbp in size in both male and female maps spans the SDR and covers around a third of chromosome 25. CONCLUSIONS: As recombination is suppressed over a similar region between X chromosomes and between and X and Y chromosomes, we propose that recombination is suppressed in this region because of the proximity of the NOR and the centromere, with both the NOR and centromere suppressing recombination, and this predates suppressed recombination due to differences between X and Y chromosomes. Such regions of suppressed recombination in the genome provide an opportunity for the evolution of sex chromosomes, if a sex-determining locus develops there or translocates into this region.


Asunto(s)
Actinidia/genética , Cromosomas de las Plantas , Recombinación Genética , Cromosomas Sexuales , Actinidia/citología , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Variación Genética , Hibridación Fluorescente in Situ , Repeticiones de Microsatélite
17.
Mol Ecol ; 28(6): 1375-1393, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30537056

RESUMEN

Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.


Asunto(s)
Adaptación Fisiológica/genética , Inversión Cromosómica/genética , Gastrópodos/genética , Especiación Genética , Animales , Ecotipo , Desequilibrio de Ligamiento/genética , Selección Genética
18.
Mol Ecol ; 26(5): 1357-1370, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28035715

RESUMEN

DNA sequence diversity in genes in the partially sex-linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within-species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex-determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation-based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex-linked genes, which requires closer linkage with the fully sex-linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism.


Asunto(s)
Flujo Génico , Genes de Plantas , Selección Genética , Silene/genética , Teorema de Bayes , Cromosomas de las Plantas , Modelos Genéticos
19.
Genome ; 60(8): 707-711, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28727488

RESUMEN

Gene mapping is an important resource for understanding the evolution of genes and cytogenetics. Model species with a known genetic map or genome sequence allow for the selection of genetic markers on a desired chromosome, while it is hard to locate these markers on chromosomes of non-model species without such references. A frog species, Quasipaa boulengeri, shows chromosomal rearrangement polymorphisms, making itself a fascinating model for chromosomal speciation mediated by suppressed recombination. However, no markers have been located on its rearranged chromosomes. We present a complete protocol to map microsatellites based on mechanical microdissection and chromosome amplification techniques. Following this protocol, we mapped 71 microsatellites of Q. boulengeri at the chromosome level. In total, eight loci were assigned to rearranged chromosomes, and the other 63 loci might attach to other chromosomes. These microsatellites could be used to compare the gene flow and verify the chromosomal suppressed recombination hypothesis in Q. boulengeri. This integrated protocol could be effectively used to map genes to chromosomes for non-model species.


Asunto(s)
Anuros/genética , Mapeo Cromosómico , Reordenamiento Génico , Repeticiones de Microsatélite/genética , Animales , Marcadores Genéticos
20.
Planta ; 243(5): 1083-95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26919983

RESUMEN

MAIN CONCLUSION: The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.


Asunto(s)
Cromosomas de las Plantas , Epigénesis Genética , Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Evolución Biológica , ADN de Plantas/genética , Recombinación Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda