Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930283

RESUMEN

The integration of recycled polymers into additive manufacturing (AM) processes offers a promising opportunity for advancing sustainability within the manufacturing industry. This review paper summarizes existing research and developments related to the use of recycled materials in AM, focusing on distinct polymers, such as polylactic acid (PLA), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS), among others. Key topics explored include the availability of recycled filaments on the market, challenges associated with material variability and traceability, and efforts toward establishing ethical product standards and sustainability characterization methodologies. Regulatory considerations and standards development by organizations such as ASTM and ISO are discussed, along with recommendations for future advancements in improving the sustainability of filament recycling and achieving net-zero emissions in AM processes. The collective efforts outlined in this paper underscore the potential of recycled polymers in AM to foster a more sustainable and environmentally friendly manufacturing industry.

2.
Chemosphere ; 335: 139159, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290512

RESUMEN

Polymeric waste is an environmental problem, with an annual world production of approximately 368 million metric tons, and increasing every year. Therefore, different strategies for polymer waste treatment have been developed, and the most common are (1) redesign, (2) reusing and (3) recycling. The latter strategy represents a useful option to generate new materials. This work reviews the emerging trends in the development of adsorbent materials obtained from polymer wastes. Adsorbents are used in filtration systems or in extraction techniques for the removal of contaminants such as heavy metals, dyes, polycyclic aromatic hydrocarbons and other organic compounds from air, biological and water samples. The methods used to obtain different adsorbents are detailed, as well as the interaction mechanisms with the compounds of interest (contaminants). The adsorbents obtained are an alternative to recycle polymeric and they are competitive with other materials applied in the removal and extraction of contaminants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Polímeros , Colorantes , Adsorción , Purificación del Agua/métodos
3.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501453

RESUMEN

Poly(lactic acid) (PLA) is one of the most promising renewable polymers to be employed to foster ecological and renewable materials in many fields of application. To develop high-performance products, however, the thermal resistance and the impact properties should be improved. At the same time, it is also necessary to consider the end of life through the exploration of property assessment, following reprocessing. In this context the aim of the paper is to develop PLA/PC blends, obtained from recycled materials, in particular scraps from secondary processing, to close the recycling loop. Indeed, the blending of PLA with polycarbonate (PC) was demonstrated to be a successful strategy to improve thermomechanical properties that happens after several work cycles. The correlation between the compositions and properties was then investigated by considering the morphology of the blends; in addition, the reactive extrusions resulting in the formation of a PLA-PC co-polymer were investigated. The materials obtained are then examined by means of a dynamic-mechanical analysis (DMTA) to study the relaxations and transitions.

4.
Polymers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36501616

RESUMEN

In this study, the effect of the recycling process and copper particle incorporation on virgin and recycled pellet HDPE were investigated by thermo-chemical analysis, mechanical characterization, and antibacterial analysis. Copper particles were added to pellet HDPE, virgin and recycled, using a tabletop single screw extruder. Some copper particles, called copper nano-particles (Cu-NPs), had a spherical morphology and an average particle size near 20 nm. The others had a cubic morphology and an average particle size close to 300 nm, labeled copper nano-cubes (Cu-NCs). The thermo-chemical analysis revealed that the degree of crystallization was not influenced by the recycling process: 55.38 % for virgin HDPE and 56.01% for recycled HDPE. The degree of crystallization decreased with the addition of the copper particles. Possibly due to a modification in the structure, packaging organization, and crystalline ordering, the recycled HDPE reached a degree of crystallization close to 44.78% with 0.5 wt.% copper nano-particles and close to 36.57% for the recycled HDPE modified with 0.7 wt.% Cu-NCs. Tensile tests revealed a slight reduction in the tensile strength related to the recycling process, being close to 26 MPa for the virgin HDPE and 15.99 MPa for the recycled HDPE, which was improved by adding copper particles, which were near 25.39 MPa for 0.7 wt.% copper nano-cubes. Antibacterial analysis showed a reduction in the viability of E. coli in virgin HDPE samples, which was close to 8% for HDPE containing copper nano-particles and lower than 2% for HDPE having copper nano-cubes. In contrast, the recycled HDPE revealed viability close to 95% for HDPE with copper nano-particles and nearly 50% for HDPE with copper nano-cubes. The viability of S. aureus for HDPE was lower than containing copper nano-particles and copper nano-cubes, which increased dramatically close to 80% for recycled HDPE with copper nano-particles 80% and 75% with copper nano-cubes.

5.
Materials (Basel) ; 12(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795608

RESUMEN

This review focusses on the use of recycled and virgin polymers in mineral and metallurgical processing, both high and ambient temperature processes, including novel applications. End of life applications of polymers as well as the utilisation of polymers during its life time in various applications are explored. The discussion includes applications in cleaner coal production, iron and steel production, iron ore palletisation, iron alloy manufacturing, manganese processing, E-wastes processing and carbon sequestration. The underlying principles of these applications are also explained. Advantages and disadvantages of using these polymers in terms of energy and emission reductions, reduction in non-renewables and dematerialisation are discussed. Influence of the polymers on controlling the evolution of micro and nanostructures in alloys and advanced materials is also considered.

6.
Materials (Basel) ; 10(9)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878187

RESUMEN

New methods are being developed to enable the production of value-added materials from high-volume, low-cost feedstocks arising from domestic recycling streams. In this work, recycled bottle-grade polyethylene terephthalate, polystyrene, and polypropylene were spun into fibers from the melt using a centrifugal spinning technique. Mono-component fibers and 50/50 blends of each polymer and a 33/33/33 blend of all three polymers were evaluated. Fiber morphology, chemistry, thermal, and mechanical properties were probed. Fiber diameters ranged from ca. 1 to over 12 µm, with polypropylene fibers having the smallest fiber diameters. Mono-component fibers were generally defect-free, while composite fibers containing polypropylene were beady. Fibers made from polyethylene terephthalate had the highest tensile strength, and the addition of polyethylene terephthalate to the other polymers improved the mechanical properties of the blends. Nano- and micro-fibers from both pure and mixed waste streams are expected to have applications in myriad areas such as ultra/micro-filtration, composites, and insulation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda