Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38980370

RESUMEN

RepurposeDrugs (https://repurposedrugs.org/) is a comprehensive web-portal that combines a unique drug indication database with a machine learning (ML) predictor to discover new drug-indication associations for approved as well as investigational mono and combination therapies. The platform provides detailed information on treatment status, disease indications and clinical trials across 25 indication categories, including neoplasms and cardiovascular conditions. The current version comprises 4314 compounds (approved, terminated or investigational) and 161 drug combinations linked to 1756 indications/conditions, totaling 28 148 drug-disease pairs. By leveraging data on both approved and failed indications, RepurposeDrugs provides ML-based predictions for the approval potential of new drug-disease indications, both for mono- and combinatorial therapies, demonstrating high predictive accuracy in cross-validation. The validity of the ML predictor is validated through a number of real-world case studies, demonstrating its predictive power to accurately identify repurposing candidates with a high likelihood of future approval. To our knowledge, RepurposeDrugs web-portal is the first integrative database and ML-based predictor for interactive exploration and prediction of both single-drug and combination approval likelihood across indications. Given its broad coverage of indication areas and therapeutic options, we expect it accelerates many future drug repurposing projects.


Asunto(s)
Reposicionamiento de Medicamentos , Aprendizaje Automático , Reposicionamiento de Medicamentos/métodos , Humanos , Internet , Quimioterapia Combinada , Bases de Datos Farmacéuticas , Bases de Datos Factuales
2.
Korean J Physiol Pharmacol ; 27(5): 471-479, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37641809

RESUMEN

Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.

3.
Semin Cancer Biol ; 68: 164-174, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883914

RESUMEN

Though limited success through chemotherapy, radiotherapy and surgery has been obtained for efficient cancer therapy for modern decades, cancers are still considered high burden to human health worldwide to date. Recently repurposing drugs are attractive with lower cost and shorter time compared to classical drug discovery, just as Metformin from Galega officinalis, originally approved for treating Type 2 diabetes by FDA, is globally valued at millions of US dollars for cancer therapy. As most previous reviews focused on FDA approved drugs and synthetic agents, current review discussed the anticancer potential of phytochemicals originally approved for treatment of cardiovascular diseases, diabetes, infectious diarrhea, depression and malaria with their molecular mechanisms and efficacies and suggested future research perspectives.


Asunto(s)
Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Animales , Humanos
4.
Infection ; 50(2): 295-308, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34902115

RESUMEN

PURPOSE: The Coronavirus disease 2019 (COVID-19) pandemic is one of the most devastating global problems. Regarding the lack of disease-specific treatments, repurposing drug therapy is currently considered a promising therapeutic approach in pandemic situations. Recently, the combination therapy of Janus kinase (JAK) inhibitor baricitinib has been authorized for emergency COVID-19 hospitalized patients; however, this strategy's safety, drug-drug interactions, and cellular signaling pathways remain a tremendous challenge. METHODS: In this study, we aimed to provide a deep insight into the baricitinib combination therapies in severe COVID-19 patients through reviewing the published literature on PubMed, Scopus, and Google scholar databases. We also focused on cellular and subcellular pathways related to the synergistic effects of baricitinib plus antiviral agents, virus entry, and cytokine storm (CS) induction. The safety and effectiveness of this strategy have also been discussed in moderate to severe forms of COVID-19 infection. RESULTS: The severity of COVID-19 is commonly associated with a dysregulated immune response and excessive release of pro-inflammatory agents, resulting in CS. It has been shown that baricitinib combined with antiviral agents could modulate the inflammatory response and provide a series of positive therapeutic outcomes in hospitalized adults and pediatric patients (age ≥ two years old). CONCLUSION: Baricitinib plus the standard of care treatment might be a potential strategy in hospitalized patients with severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de las Cinasas Janus , Adulto , Azetidinas , Niño , Preescolar , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Purinas , Pirazoles , SARS-CoV-2 , Sulfonamidas
5.
Gastric Cancer ; 24(5): 1037-1049, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33782804

RESUMEN

BACKGROUND: Despite improvements in gastric cancer treatment, the mortality associated with advanced gastric cancer is still high. The activation of ß-adrenergic receptors by stress has been shown to accelerate the progression of several cancers. Accordingly, increasing evidence suggests that the blockade of ß-adrenergic signaling can inhibit tumor growth. However, the effect of ß-blockers, which target several signaling pathways, on gastric cancer remains to be elucidated. This study aimed to investigate the anti-tumor effects of propranolol, a non-selective ß-blocker, on gastric cancer. METHODS: We explored the effect of propranolol on the MKN45 and NUGC3 gastric cancer cell lines. Its efficacy and the mechanism by which it exerts anti-tumor effects were examined using several assays (e.g., cell proliferation, cell cycle, apoptosis, and wound healing) and a xenograft mouse model. RESULTS: We found that propranolol inhibited tumor growth and induced G1-phase cell cycle arrest and apoptosis in both cell lines. Propranolol also decreased the expression of phosphorylated CREB-ATF and MEK-ERK pathways; suppressed the expression of matrix metalloproteinase-2, 9 and vascular endothelial growth factor; and inhibited gastric cancer cell migration. In the xenograft mouse model, propranolol treatment significantly inhibited tumor growth, and immunohistochemistry revealed that propranolol led to the suppression of proliferation and induction of apoptosis. CONCLUSIONS: Propranolol inhibits the proliferation of gastric cancer cells by inducing G1-phase cell cycle arrest and apoptosis. These findings indicate that propranolol might have an opportunity as a new drug for gastric cancer.


Asunto(s)
Propranolol , Neoplasias Gástricas , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Metaloproteinasa 2 de la Matriz , Ratones , Propranolol/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular
6.
J Appl Microbiol ; 127(2): 459-471, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31087803

RESUMEN

AIMS: The aim of this study was to assess anti-biofilm and antimicrobial effects of auranofin, an anti-rheumatic agent, on uropathogenic Escherichia coli (UPEC) biofilm formation. METHODS AND RESULTS: The minimum inhibitory concentration and biofilm inhibition concentration of auranofin against UPEC ranged from 24 to 32 µg ml-1 . Biofilm eradication concentration and XTT reduction concentration of auranofin were found to be at 112 µg ml-1 . Confocal laser scanning microscopy results confirmed that biofilm was inhibited by auranofin. These results indicate that auranofin possesses potent anti-biofilm and antimicrobial activities against UPEC. Effects of auranofin on type 1 fimbriae gene (fimH) and response regulator gene (rpoS) to stress were explored using quantitative real time-polymerase chain reaction. In addition, combination of auranofin and tetracycline showed synergistic effect. CONCLUSIONS: These data indicate that auranofin has inhibitory effect on biofilm formation and synergistic effect on UPEC infection when it is combined with tetracycline. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study strongly suggest that auranofin is a promising alternative anti-biofilm and antimicrobial agent to prevent UPEC biofilm formation in UTIs. Auranofin already approved for human use have the advantage of being able to be put into clinical use relatively quickly.


Asunto(s)
Antibacterianos/farmacología , Auranofina/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli Uropatógena/efectos de los fármacos , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Reposicionamiento de Medicamentos , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Humanos , Tetraciclina/farmacología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/fisiología
7.
Antibiotics (Basel) ; 13(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39335008

RESUMEN

Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.

8.
Cell Biochem Biophys ; 82(3): 1907-1929, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954353

RESUMEN

Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.


Asunto(s)
Antineoplásicos , Reposicionamiento de Medicamentos , Hipoglucemiantes , Neoplasias , Humanos , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Animales
9.
Pharmaceutics ; 15(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37765160

RESUMEN

Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.

10.
Cells ; 12(8)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190109

RESUMEN

Patients diagnosed with isocitrate dehydrogenase mutant (IDHmut) gliomas suffer frequently from seizures. Although the clinical course is less aggressive than that of its IDH wildtype counterpart, recent discoveries have shown that epileptic activity can promote tumor proliferation. However, it is not known if antiepileptic drugs confer additional value by inhibiting tumor growth. In this study, the antineoplastic properties of 20 FDA-approved antiepileptic drugs (AEDs) were tested in six patient-derived IDHmut glioma stem-like cells (GSCs). Cell proliferation was assessed using the CellTiterGlo-3D assay. Two of the screened drugs (oxcarbazepine and perampanel) demonstrated an antiproliferative effect. A subsequent eight-point dose-response curve proved the dose-dependent growth inhibition for both drugs, but only oxcarbazepine reached an IC50 value below 100 µM in 5/6 GSCs (mean 44.7 µM; range 17.4-98.0 µM), approximating the possible cmax for oxcarbazepine in patient serums. Furthermore, the treated GSC spheroids were 82% smaller (mean volume 1.6 nL vs. 8.7 nL; p = 0.01 (live/deadTM fluorescence staining)), and the apoptotic events increased by more than 50% (caspase-3/7 activity; p = 0.006). Taken together, this drug screen of a large series of antiepileptic drugs identified oxcarbazepine as a potent proapoptotic drug in IDHmut GSCs, which combines antiepileptic and antineoplastic properties to treat this seizure-prone patient population.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Anticonvulsivantes/farmacología , Oxcarbazepina/farmacología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología
11.
Front Microbiol ; 13: 844615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283839

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2019.00041.].

12.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35455442

RESUMEN

Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.

13.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073235

RESUMEN

The development of new strategic therapies for multidrug-resistant bacteria, like the use of non-antimicrobial approaches and/or drugs repurposed to be used as monotherapies or in combination with clinically relevant antibiotics, has become urgent. A therapeutic alternative for infections by multidrug-resistant Gram-negative bacilli (MDR-GNB) is immune system modulation to improve the infection clearance. We showed that immunocompetent mice pretreated with tamoxifen at 80 mg/kg/d for three days and infected with Acinetobacter baumannii, Pseudomonas aeruginosa, or Escherichia coli in peritoneal sepsis models showed reduced release of the monocyte chemotactic protein-1 (MCP-1) and its signaling pathway interleukin-18 (IL-18), and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). This reduction of MCP-1 induced the reduction of migration of inflammatory monocytes and neutrophils from the bone marrow to the blood. Indeed, pretreatment with tamoxifen in murine peritoneal sepsis models reduced the bacterial load in tissues and blood, and increased mice survival from 0% to 60-100%. Together, these data show that tamoxifen presents therapeutic efficacy against MDR A. baumannii, P. aeruginosa, and E. coli in experimental models of infection and may be a new candidate to be repurposed as a treatment for GNB infections.

14.
J Drug Target ; 29(1): 1-11, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32700566

RESUMEN

Small cell lung cancer (SCLC) is an aggressive malignant tumour which accounts for approximately 13-15% of all newly diagnosed lung cancer cases. To date, platinum-based chemotherapy are still the first-line treatments for SCLC. However, chemotherapy resistance and systemic toxicity limit the long-term clinical outcome of first-line treatment in SCLC. Recent years, targeted therapy and immunotherapy have made great breakthrough in cancer therapy, and researchers aim to exploit both as a single agent or in combination with chemotherapy to improve the survival of SCLC patients, but limited effectiveness and the adverse events remain the major obstacles in the treatment of SCLC. To overcome these challenges for SCLC therapies, prevention and early diagnosis for this refractory disease is very important. At the same time, we should reveal more information about the pathogenesis of SCLC and the mechanism of drug resistance. Finally, new treatment strategies should also be taken into considerations, such as repurposing drug, optimising of targets, combination therapy strategies or prognostic biomarkers to enhance therapeutic effects and decrease the adverse events rates in SCLC patients. This article will review the molecular biology characteristics of SCLC and discuss the opportunities and obstacles of the current therapy for SCLC patients.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Terapia Molecular Dirigida/métodos , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/terapia , Ensayos Clínicos como Asunto/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
15.
Drug Discov Today ; 26(7): 1765-1772, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798646

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular genetic disease with an estimated prevalence of approximately at least half a million individuals based on its vast ethnic variation. Building upon a well-known physiopathology and several proof-of-concept therapeutic approaches, herein we compile a comprehensive overview of the most recent drug development programs under preclinical and clinical evaluation. Specifically, close to two dozen drug developments, eight of which are already in clinical trials, explore a diversity of new chemical entities, drug repurposing, oligonucleotide, and gene therapy-based approaches. Of these, repurposing of tideglusib, mexiletine, or metformin appear to be therapies with the most potential to receive marketing authorization for DM1.


Asunto(s)
Distrofia Miotónica/tratamiento farmacológico , Animales , Desarrollo de Medicamentos , Humanos
16.
Front Pharmacol ; 11: 577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457608

RESUMEN

Gynecologic cancers are among the most lethal cancers found in women, and, advanced stage cancers are still a treatment challenge. Ion channels are known to contribute to cellular homeostasis in all cells and mounting evidence indicates that ion channels could be considered potential therapeutic targets against cancer. Nevertheless, the pharmacologic effect of targeting ion channels in cancer is still understudied. We found that the expression of Kir6.2/SUR2 potassium channel is a potential favorable prognostic factor in gynecologic cancers. Also, pharmacological stimulation of the Kir6.2/SUR2 channel activity with the selective activator molecule minoxidil arrests tumor growth in a xenograft model of ovarian cancer. Investigation on the mechanism linking the Kir6.2/SUR2 to tumor growth revealed that minoxidil alters the metabolic and oxidative state of cancer cells by producing mitochondrial disruption and extensive DNA damage. Consequently, application of minoxidil results in activation of a caspase-3 independent cell death pathway. Our data show that repurposing of FDA approved K+ channel activators may represent a novel, safe adjuvant therapeutic approach to traditional chemotherapy for the treatment of gynecologic cancers.

17.
Arab J Chem ; 13(11): 8069-8079, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34909057

RESUMEN

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that originated in Chinese city of Wuhan has caused around 906,092 deaths and 28,040,853 confirmed cases worldwide (https://covid19.who.int/, 11 September 2020). In a life-threatening situation, where there is no specific and licensed anti-COVID-19 vaccine or medicine available; the repurposed drug might act as a silver bullet. Currently, more than 211 vaccines, 80 antibodies, 31 antiviral drugs, 35 cell-based, 6 RNA-based and 131 other drugs are in clinical trials. It is therefore utter need of the hour to develop an effective drug that can be used for the treatment of COVID-19 before a vaccine can be developed. One of the best-characterized and attractive drug targets among coronaviruses is the main protease (3CLpro). Therefore, the current study focuses on the molecular docking analysis of TAT-peptide47-57 (GRKKRRQRRRP)-conjugated repurposed drugs (i.e., lopinavir, ritonavir, favipiravir, and hydroxychloroquine) with SARS-CoV-2 main protease (3CLpro) to discover potential efficacy of TAT-peptide (TP) - conjugated repurposing drugs against SARS-CoV-2. The molecular docking results validated that TP-conjugated ritonavir, lopinavir, favipiravir, and hydroxychloroquine have superior and significantly enhanced interactions with the target SARS-CoV-2 main protease. In-silico approach employed in this study suggests that the combination of the drug with TP is an excelling alternative to develop a novel drug for the treatment of SARS-CoV-2 infected patients. The development of TP based delivery of repurposing drugs might be an excellent approach to enhance the efficacy of the existing drugs for the treatment of COVID-19. The predictions from the results obtained provide invaluable information that can be utilized for the choice of candidate drugs for in vitro, in vivo and clinical trials. The outcome from this work prove crucial for exploring and developing novel cost-effective and biocompatible TP conjugated anti-SARS-CoV-2 therapeutic agents in immediate future.

18.
Front Microbiol ; 10: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745898

RESUMEN

Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat that demands effective solutions; the situation is deemed a global priority by the World Health Organization and the European Centre for Disease Prevention and Control. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections has recently gained renewed interest. As drugs approved by the United States Food and Drug Administration, information about their pharmacological characteristics in preclinical and clinical trials is available. Therefore, the time and economic costs required to evaluate these drugs for other therapeutic applications, such as the treatment of bacterial and fungal infections, are mitigated. The goal of this review is to provide an overview of the scientific evidence on potential non-antimicrobial drugs targeting bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug screens as potential alternative treatments for infections caused by MDR pathogens; (ii) review their mechanisms of action against bacteria and fungi; and (iii) summarize the outcome of preclinical and clinical trials investigating approved drugs that target these pathogens.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31044071

RESUMEN

Background: Although antifungals are available and usually used against fungal infections, multidrug-resistant (MDR) fungal pathogens are a growing problem for public health. Moreover, fungal infections have become more prevalent nowadays due to the increasing number of people living with immunodeficiency. Thus, previously rarely-isolated and/or unidentified fungal species including MDR yeast and moulds have emerged around the world. Recent works indicate that polymyxin antibiotics (polymyxin B and colistin) have potential antifungal proprieties. Therefore, investigating the in vitro activity of these molecules against clinical multidrug-resistant yeast and moulds could be very useful. Methods: In this study, a total of 11 MDR yeast and filamentous fungal strains commonly reported in clinical settings were tested against polymyxin antibiotics. These include strains belonging to the Candida, Cryptococcus and Rhodotorula yeast genera, along with others belonging to the Aspergillus, Fusarium, Scedosporium, Lichtheimia and Rhizopus mould genera. The fungicidal or fungistatic action of colistin against clinical yeast strains was determined by the time-kill study. Further, a checkerboard assay for its combination with antifungal agents, usually used in clinical practices (amphotericin B, itraconazole, voriconazole), was carried out against multi-drug resistant fungal strains. Results: Polymyxin B and colistin exhibited an antifungal activity against all MDR fungal strains tested with MICs ranging from 16 to 128 µg/ml, except for the Aspergillus species. In addition, colistin has a fungicidal action against yeast species, with minimum fungicidal concentrations ranging from 2 to 4 times MICs. It induces damage to the MDR Candida albicans membrane. A synergistic activity of colistin-amphotericin B and colistin-itraconazole associations against Candida albicans and Lichtheimia corymbifera strains, respectively, and colistin-fluconazole association against Rhodotorula mucilaginosa, was demonstrated using a checkerboard microdilution assay. Conclusion: colistin could be proposed, in clinical practice, in association with other antifungals, to treat life-threatening fungal infections caused by MDR yeasts or moulds.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica Múltiple , Hongos/efectos de los fármacos , Polimixinas/farmacología , Colistina/farmacología , Reposicionamiento de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología
20.
Ann Transl Med ; 7(22): 651, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31930052

RESUMEN

BACKGROUND: Recurrent and metastatic head and neck squamous cell carcinoma (HNSCC) has a dismal prognosis with limited progression-free survival and overall survival, even when treated with different combinations of chemotherapy, targeted therapies and immunotherapy. We explored in vitro and in vivo the effect of the epidermal growth factor receptor (EGFR) inhibitor, osimertinib, alone and in combination with dihydroartemisinin (DHA) in HNSCC. METHODS: The combination of osimertinib with DHA was tested in the FaDu and CAL27 HNSCC cell lines. Tumor cell proliferation assays were conducted in cultured cells and mouse xenografts. Western blotting analysis of related signal pathways was performed to investigate the molecular mechanisms of the inhibitory effect of DHA and the combination. Other compounds, which inhibit signal transducer and activator of transcription 3 (STAT3), Src-family kinases (SFKs), sphingosine kinase 1 (SPHK1), or the receptor tyrosine kinase (RTK) AXL were also combined with osimertinib in vitro. RESULTS: Osimertinib exerted synergistic cytotoxicity toward FaDu and CAL27 HNSCC cells when combined with DHA. DHA reversed the osimertinib-induced STAT3 and Src phosphorylation. The double combination inhibited AXL expression. The anticancer potential of osimertinib plus DHA combination was validated in vivo on FaDu and CAL27 xenografts in mice without notable side effects. CONCLUSIONS: The results illustrate that the combinatory therapy of osimertinib and DHA, as a repurposing anticancer drug, could be a novel therapeutic strategy for recurrent and/or metastatic HNSCC patients. The findings strongly indicate that a clinical trial is warranted to confirm the benefit of the combination.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda