Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Chem Rec ; 24(10): e202400098, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39289830

RESUMEN

Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.

2.
J Environ Manage ; 329: 117089, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565499

RESUMEN

Efficient electrode materials are essential to convert salinity gradient energy into oxidative degradation energy and electrical energy by reverse electrodialysis reactor (REDR). In this context, comparative experiments of REDR using different anodes (Ti/IrO2-RuO2, Ti/PbO2 and Ti/Ti4O7) were conducted. The effects of output current and electrode rinse solution (ERS) flowrate on mineralization efficiency and energy output were discussed. Results demonstrated that the COD removal rate(ηCOD) rose almost linearly with output current and ERS flowrate when using Ti/Ti4O7 anode, but excessive operating conditions caused a slow increase or even decrease of ηCOD when using Ti/IrO2-RuO2 or Ti/PbO2 anodes. The order of electrode system potential loss (Eele) for the three anodes was Ti/Ti4O7> Ti/PbO2> Ti/IrO2-RuO2. High Eele was beneficial to ηCOD but had a negative effect on the net output power (Pnet) of REDR. Regardless of the applied anodes, increasing the current and decreasing the ERS flowrate was detrimental to Pnet due to higher Eele. Based on these findings, four energy efficiency parameters were defined to evaluate energy recovery from multiple perspectives by linking energy output with mineralization capacity. They were electrode efficiency (ηele), energy efficiency (EE), general current efficiency (GCE) and energy consumption (EC), respectively. Results showed that REDR with Ti/Ti4O7 anodes and suitable operating conditions achieved the optimal energy indicators and mineralization efficiency, which provided an efficient and economical option for wastewater treatment and energy recovery.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Fenol , Fenoles , Oxidación-Reducción , Electrodos , Titanio
3.
Small ; 18(2): e2104320, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747120

RESUMEN

Large-scale salinity gradient power energy harvesting has generated broad attention in recent years, in which affordable ion-selective membranes (ISMs) are essential for its practical implementation. In this study, for the first time, ISMs derived from natural loofah sponge are reported, which have features of high hydrophilicity, superior ion conductivity, and 3D interconnected long fibers. The permselectivity and ion conductivity of loofah-based anion-selective membranes (ASMs) and cation-selective membranes (CSMs) are designed by chemical modification of the surface functional groups of loofah fibers and followed with compression and the resin filling. The charged nanochannels inside the ISMs are served as ion conductive and selective channels based on the nanofluidic effects and Donnan exclusion. Meanwhile, the unique isotropic structure endows excellent dimensional stability under the NaCl solution for months. When ISMs are used for salinity gradient power generation from the gradient of artificial seawater and river water, the maximum power density is 18.3 mW m-2 . When ten units of loofah-based ISMs are stacked in series, a voltage as high as 1.55 V is achieved. The results highlight the great potential of natural fibers for fabricating affordable, durable, and high performance ISMs, paving a sustainable pathway for developing high-performance, durable, and low-cost salinity gradient power generators.


Asunto(s)
Luffa , Salinidad , Agua Dulce/química , Membranas Artificiales , Agua de Mar/química
4.
Environ Res ; 214(Pt 4): 114064, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35977587

RESUMEN

In this paper, the synthetic methyl orange (MO) dyeing wastewater treated by a reverse electrodialysis reactor (REDR) with 40 member pairs was investigated first. The boron-doped diamond (BDD) and carbon felt were adopted as an anode and a cathode in the REDR. The influences of operation parameters on the chemical oxygen demand (COD) removal efficiency were detected and explored. Then, a mathematical model of organic mineralizing was developed for the REDR to predict the variation of COD removal efficiency with treating time under the different operation conditions. Finally, the energy consumption of the wastewater treated by the REDR was analyzed. The results showed that raising the working fluid flowing velocity and electrode rinse solution flowrate improved the COD removal efficiency and instantaneous current efficiency (ICE), and reduced the total energy consumption (TEC) of the REDR. Raising the initial MO concentration could significantly reduce the TEC despite the COD removal efficiency being near. Since the main energy consumed by the REDR was salinity gradient energy (SGE) from waste heat conversion or the natural environment, the energy cost of REDR treating wastewater has been reduced significantly.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Compuestos Azo , Análisis de la Demanda Biológica de Oxígeno , Colorantes , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis
5.
J Environ Manage ; 303: 114124, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839173

RESUMEN

Sustainable utilization has been becoming the core idea of concentrated seawater disposal, which makes the harvest of salinity gradient power based on reverse electrodialysis (RED) become one of the important ways. As the important factors affecting RED performance, different flow orientations along the membrane and solution temperature have been studied in the previous researches. However, there are still some details that need to be clarified. In this study, the inflow mode was further detailed investigated. The results showed that after eliminating the interference of bubbles in the counter-current, the co-current was still better than the counter-current; when the solution of HCC (high concentration compartment) and LCC (low concentration compartment) was circulated for 3 h, the concentration of concentrated seawater discharge liquid was reduced by 6.93%, which was conducive to reducing the negative impact on the marine ecological environment. Meanwhile, the response of salinity gradient power generation to temperature difference was that high temperature had a positive effect on power density, and the order was both the HCC and LCC (0.44 W m-2) > LCC (0.42 W m-2) > HCC (0.39 W m-2). Although the RED performance was more sensitive to the temperature rise of LCC, the positive temperature difference between HCC and LCC is a more practical advantage because the temperature of concentrated seawater in HCC is usually high. These new observations could provide supports for the industrial development of RED in generating electricity economically and reducing the negative environmental impact of concentrated seawater.


Asunto(s)
Energía Renovable , Salinidad , Agua de Mar , Ecosistema , Electricidad , Temperatura
6.
Environ Sci Technol ; 55(16): 11388-11396, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310128

RESUMEN

Irreversible faradic reactions in reverse electrodialysis (RED) are an emerging concern for scale-up, reducing the overall performance of RED and producing environmentally harmful chemical species. Capacitive RED (CRED) has the potential to generate electricity without the necessity of irreversible faradic reactions. However, there is a critical knowledge gap in the fundamental understanding of the effects of operational stack voltages of CRED on irreversible faradic reactions and the performance of CRED. This study aims to develop an active control strategy to avoid irreversible faradic reactions and pH change in CRED, focusing on the effects of a stack voltage (0.9-5.0 V) on irreversible faradic reactions and power generation. Results show that increasing the initial output voltage of CRED by increasing a stack voltage has an insignificant impact on irreversible faradic reactions, regardless of the stack voltage applied, but a cutoff output voltage of CRED is mainly responsible for controlling irreversible faradic reactions. The CRED system with eliminating irreversible faradic reactions achieved a maximum power density (1.6 W m-2) from synthetic seawater (0.513 M NaCl) and freshwater (0.004 M NaCl). This work suggests that the control of irreversible faradic reactions in CRED can provide stable power generation using salinity gradients in large-scale operations.


Asunto(s)
Agua Dulce , Salinidad , Electricidad , Fenómenos Físicos , Agua de Mar
7.
J Environ Manage ; 287: 112319, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33721763

RESUMEN

The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m-3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-empirical approach. The model was validated against experimental data and was applied over a variety of operating conditions, showing that it may represent an effective tool for the prediction of the BMRED performance. A sensitivity analysis was performed in two different scenarios, i.e. (i) a reference case and (ii) an improved case with high-performance membrane properties. A Net Power Density of ~15 W m-2 was predicted in the reference scenario with 1 M HCl and NaOH solutions, but it increased significantly by simulating high-performance membranes. A simulated scheme for an industrial application yielded an energy density of ~50 kWh m-3 (of acid solution) with an energy efficiency of ~80-90% in the improved scenario.


Asunto(s)
Membranas Artificiales , Aguas Residuales , Electricidad , Fuerza Protón-Motriz , Ríos
8.
Molecules ; 26(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430426

RESUMEN

In this study, novel asymmetric integral cation exchange membranes were prepared by the wet phase inversion of sulfonated polysulfone (SPSf) solutions. SPSf with different degrees of sulfonation (DS) was synthesized by variation in the amount of chlorosulfonic acid utilized as a sulfonating agent. The characterization of SPSf samples was performed using FTIR and 1H-NMR techniques. SPSf with a DS of 0.31 (0.67 meq/g corresponding ion exchange capacity) was chosen to prepare the membranes, as polymers with a higher DS resulted in poor mechanical properties and excessive swelling in water. By a systematic study, the opportunity to tune the properties of SPSf membranes by acting on the composition of the polymeric solution was demonstrated. The effect of two different phase inversion parameters, solvent type and co-solvent ratio, were investigated by morphological and electrochemical characterization. The best properties (permselectivity of 0.86 and electrical resistance of 6.3 Ω∙cm2) were obtained for the membrane prepared with 2-propanol (IPA):1-Methyl-2-pyrrolidinone (NMP) in a 20:80 ratio. This membrane was further characterized in different solution concentrations to estimate its performance in a Reverse Electrodialysis (RED) operation. Although the estimated generated power was less than that of the commercial CMX (Neosepta) membrane, used as a benchmark, the tailor-made membrane can be considered as a cost-effective alternative, as one of the main limitations to the commercialization of RED is the high membrane price.


Asunto(s)
Cationes/química , Fenómenos Químicos , Intercambio Iónico , Membranas Artificiales , Polímeros/química , Sulfonas/química , Algoritmos , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Estructura Molecular , Solventes , Análisis Espectral
9.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576940

RESUMEN

Harvesting salinity gradient energy, also known as "osmotic energy" or "blue energy", generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.

10.
Energy Convers Manag ; 244: None, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34538999

RESUMEN

In this study, stack design for high concentration gradient reverse electrodialysis operating in recycle is addressed. High concentration gradients introduce complex transport phenomena, which are exacerbated when recycling feeds; a strategy employed to improve system level energy efficiency. This unique challenge indicates that membrane properties and spacer thickness requirements may differ considerably from reverse electrodialysis for lower concentration gradients (e.g. seawater/river water), drawing closer parallels to electrodialysis stack design. Consequently, commercially available electrodialysis and reverse electrodialysis stack design was first compared for power generation from high concentration gradients. Higher gross power densities were identified for the reverse electrodialysis stack, due to the use of thinner membranes characterised by a higher permselectivity, which improved current. However, energy efficiency of the electrodialysis stack was twice that recorded for the reverse electrodialysis stack at low current densities, which was attributed to: (i) an increased residence time provided by the larger intermembrane distance, and (ii) reduced exergy losses of the electrodialysis membranes, which provided comparatively lower water permeance. Further in-depth investigation into membrane properties and spacer thickness identified that membranes characterised by an intermediate water permeability and ohmic resistance provided the highest power density and energy efficiency (Neosepta ACS/CMS), while wider intermembrane distances up to 0.3 mm improved energy efficiency. This study confirms that reverse electrodialysis stacks for high concentration gradients in recycle therefore demand design more comparable to electrodialysis stacks to drive energy efficiency, but when selecting membrane properties, the trade-off with permselectivity must also be considered to ensure economic viability.

11.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878293

RESUMEN

Reverse electrodialysis (RED) is an electro-membrane process for the conversion of mixing energy into electricity. One important problem researchers' face when modeling the RED process is the choice of the proper membrane transport equations. In this study, using experimental data that describe the membrane Nafion 120 in contact with NaCl aqueous solutions, the linear transport equation of irreversible thermodynamics was applied to calculate the power density of the RED system. Various simplifying assumptions about transport equation (i.e., four-, three-, and two-coefficients approaches) are proposed and discussed. We found that the two-coefficients approach, using the membrane conductivity and the apparent transport number of ions, describes the power density with good accuracy. In addition, the influence of the membrane thickness and the concentration polarization on the power density is also demonstrated.


Asunto(s)
Conductividad Eléctrica , Electrólisis/métodos , Membranas Artificiales , Cloruro de Sodio/metabolismo , Termodinámica , Transporte Iónico
12.
J Memb Sci ; 584: 343-352, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31423048

RESUMEN

The integration of membrane distillation with reverse electrodialysis has been investigated as a sustainable sanitation solution to provide clean water and electrical power from urine and waste heat. Reverse electrodialysis was integrated to provide the partial remixing of the concentrate (urine) and diluate (permeate) produced from the membrane distillation of urine. Broadly comparable power densities to those of a model salt solution (sodium chloride) were determined during evaluation of the individual and combined contribution of the various monovalent and multivalent inorganic and organic salt constituents in urine. Power densities were improved through raising feed-side temperature and increasing concentration in the concentrate, without observation of limiting behaviour imposed by non-ideal salt and water transport. A further unique contribution of this application is the limited volume of salt concentrate available, which demanded brine recycling to maximise energy recovery analogous to a battery, operating in a 'state of charge'. During recycle, around 47% of the Gibbs free energy was recoverable with up to 80% of the energy extractable before the concentration difference between the two solutions was halfway towards equilibrium which implies that energy recovery can be optimised with limited effect on permeate quality. This study has provided the first successful demonstration of an integrated MD-RED system for energy recovery from a limited resource, and evidences that the recovered power is sufficient to operate a range of low current fluid pumping technologies that could help deliver off-grid sanitation and clean water recovery at single household scale.

13.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766700

RESUMEN

The main objective of this study is to explore the influence of ion composition on the trans-membrane potential across the ion exchange membrane (IEM), and thus offers a reference for the deep insight of "reverse electrodialysis heat engine" running in the composite systems. In comparison to the natural system (river water | seawater), the performance of the reverse electrodialysis (RED) stack was examined using NaHCO3, Na2CO3, and NH4Cl as the supporting electrolyte in the corresponding compartment. The effect of flow rates and the concentration ratio in the high salt concentration compartment (HCC)/low salt concentration compartment (LCC) on energy generation was investigated in terms of the open-circuit voltage (OCV) and power density per membrane area. It was found that the new system (0.49 M NaCl + 0.01 M NaHCO3|0.01 M NaHCO3) output a relatively stable power density (0.174 W·m-2), with the open-circuit voltage 2.95 V under the low flow rate of 0.22 cm/s. Meanwhile, the simulated natural system (0.5 M NaCl|0.01 M NaCl) output the power density 0.168 W·m-2, with the open-circuit voltage 2.86 V under the low flow rate of 0.22 cm/s. The findings in this work further confirm the excellent potential of RED for the recovery of salinity gradient energy (SGP) that is reserved in artificially-induced systems (wastewaters).


Asunto(s)
Cloruro de Amonio/química , Carbonatos/química , Electricidad , Membranas Artificiales , Bicarbonato de Sodio/química , Iones/química
14.
Int J Mol Sci ; 20(8)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013943

RESUMEN

In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (<0.1 bar); however, large stacks with non-parallel flow patterns and/or asymmetric configurations can exhibit higher TMP values, causing membrane deformations and changes in fluid dynamics and transport phenomena. In this work, integrated mechanical and fluid dynamics simulations were performed to investigate the TMP effects on deformation, flow and mass transfer for a profiled membrane-fluid channel system with geometrical and mechanical features and fluid velocities representative of ED/RED conditions. First, a conservatively high value of TMP was assumed, and mechanical simulations were conducted to identify the geometry with the largest pitch to height ratio still able to bear this load without exhibiting a contact between opposite membranes. The selected geometry was then investigated under expansion and compression conditions in a TMP range encompassing most practical applications. Finally, friction and mass transfer coefficients in the deformed channel were predicted by computational fluid dynamics. Significant effects of membrane deformation were observed: friction and mass transfer coefficients increased in the compressed channel, while they decreased (though to a lesser extent) in the expanded channel.


Asunto(s)
Fenómenos Químicos , Membranas Artificiales , Fenómenos Físicos , Hidrodinámica , Fenómenos Mecánicos
15.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30621185

RESUMEN

Profiled membranes (also known as corrugated membranes, micro-structured membranes, patterned membranes, membranes with designed topography or notched membranes) are gaining increasing academic and industrial attention and recognition as a viable alternative to flat membranes. So far, profiled ion exchange membranes have shown to significantly improve the performance of reverse electrodialysis (RED), and particularly, electrodialysis (ED) by eliminating the spacer shadow effect and by inducing hydrodynamic changes, leading to ion transport rate enhancement. The beneficial effects of profiled ion exchange membranes are strongly dependent on the shape of their profiles (corrugations/patterns) as well as on the flow rate and salts' concentration in the feed streams. The enormous degree of freedom to create new profile geometries offers an exciting opportunity to improve even more their performance. Additionally, the advent of new manufacturing methods in the membrane field, such as 3D printing, is anticipated to allow a faster and an easier way to create profiled membranes with different and complex geometries.


Asunto(s)
Membranas Artificiales , Diálisis/métodos , Difusión , Divorcio , Impedancia Eléctrica , Filtración/métodos , Hidrodinámica , Intercambio Iónico , Impresión Tridimensional , Salinidad
16.
J Environ Manage ; 217: 871-887, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660712

RESUMEN

The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main detrimental factors of system performance. Pressure drops increase was related to the physical obstruction of the feed channels defined by the spacers, while membrane fouling was related to the adsorption of foulants over the membrane surfaces. In order to manage channels partial clogging and fouling, different kinds of easily implemented in situ backwashings (i.e. neutral, acid, alkaline) were adopted, without the need for an abrupt interruption of the RED unit operation. The application of periodic ElectroDialysis (ED) pulses is also tested as fouling prevention strategy. The results collected suggest that RED can be used to produce electric power by unworthy wastewaters, but additional studies are still needed to characterize better membrane fouling and further improve system performance with these solutions.


Asunto(s)
Electricidad , Aguas Residuales , Membranas Artificiales , Presión , Salinidad
17.
Small ; 13(48)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29063668

RESUMEN

Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m-2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices.

18.
J Environ Manage ; 146: 463-469, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25150096

RESUMEN

The presence of a salinity gradient between saline water streams may result in the production of electricity via either reverse electrodialysis (RED) or forward osmosis. While the former system generates electricity because of the ionic current, the latter process produces electricity due to the osmotic pressure. In this study, RED is coupled with capacitive deionization (CDI) so that highly pure water, fresh water and electricity could be generated simultaneously. A CDI cell is operated at constant current, and it generated ultrapure water and two streams (a lower salinity stream of approximately 17.4 mol NaCl per m(3) and a high salinity stream of approximately 512.8 mol NaCl per m(3)) to be fed to the RED stack from a 15,000 ppm CDI feed concentration. The performed simulation reveals that, the total power generated from the RED using infinitely divided electrodes is 0.57 W/m(2) electrode area. The use of RED in a CDI plant introduces a new approach to minimize CDI brine concentration, which would otherwise have a negative impact on the environment if it were disposed directly without prior treatment.


Asunto(s)
Electrodos , Agua Dulce/química , Salinidad , Agua de Mar/química , Purificación del Agua/métodos , Fuentes Generadoras de Energía , Humanos
19.
Exploration (Beijing) ; 4(2): 20220110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38855615

RESUMEN

Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.

20.
Int J Biol Macromol ; 277(Pt 1): 133975, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029819

RESUMEN

Reverse electrodialysis (RED) systems employing charged nanochannels have gained prominence for harvesting salinity gradient energy. Nevertheless, fabricating nanochannel membranes with optimal ion selectivity and high energy conversion efficiency remains a significant challenge. In this study, we develop oppositely charged bacterial cellulose (BC)/polymer composite nano-channel membranes with precisely designed nanochannel architectures by integrating chemical modification with composite material technology. Initially, BC undergoes chemical modifications, including 2,2,6,6-Tetramethylpiperidine 1-oxy radical (TEMPO) oxidation and quaternisation. Subsequently, a polymer network is integrated into the modified BC network through a polymer synthesis technique. This approach successfully yields negatively charged BC/poly(sodium p-styrene sulfonate) (NBC/PSS) composite double-networked nanochannel membranes and positively charged BC/poly(dopamine) (PBC/PDA) composite double-networked nanochannel membranes. Notably, these membranes exhibit significantly enhanced ionic conductivities, with values of 0.0008 and 0.0014 S cm-1 for the NBC/PSS and PBC/PDA composites, respectively, while also demonstrating superior ion selectivity with cation transfer numbers of 0.9 and 0.1 respectively. Furthermore, a series connection of 30 BCE/charged polymer-based RED devices successfully powers an electronic calculator. This work offers novel insights into the design of BC-based RED devices by integrating chemical modification and polymeric composite strategies for efficient salinity gradient energy generation.


Asunto(s)
Celulosa , Membranas Artificiales , Polímeros , Salinidad , Celulosa/química , Polímeros/química , Bacterias , Óxidos N-Cíclicos/química , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda