RESUMEN
To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma/métodos , Animales , Secuencia de Bases/genética , Línea Celular Tumoral , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ADN/métodosRESUMEN
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Asunto(s)
Enfermedades de las Aves , Bornaviridae , Infecciones por Mononegavirales , Loros , Animales , Bornaviridae/genética , Glicoproteínas/genética , Infecciones por Mononegavirales/patología , Infecciones por Mononegavirales/virología , Loros/genética , Isoformas de Proteínas/genética , Genética Inversa , ARN MensajeroRESUMEN
Porcine epidemic diarrhea virus (PEDV) leads to enormous economic losses for the pork industry. However, the commercial vaccines failed to fully protect against the epidemic strains. Previously, the rCH/SX/2016-SHNXP strain with the entire E protein and the rCH/SX/2015 strain with the deletion of 7-amino-acid (7-aa) at positions 23-29 in E protein were constructed and rescued. The pathogenicity assay indicated that rCH/SX/2015 is an attenuated strain, but rCH/SX/2016-SHNXP belongs to the virulent strains. Then, the recombination PEDV (rPEDV-EΔaa23-aa29)strain with a 7-aa deletion in the E protein was generated, using the highly virulent rCH/SX/2016-SHNXP strain (rPEDV-Ewt) as the backbone. Compared with the rPEDV-Ewt strain, the release and infectivity of the rPEDV-EΔaa23-aa29 strain were significantly reduced in vitro, but stronger interferon (IFN) responses were triggered both in vitro and in vivo. The pathogenicity assay showed that the parental strain resulted in severe diarrhea (100%) and death (100%) in all piglets. Compared with the parental strain group, rPEDV-EΔaa23-aa29 caused lower mortality (33%) and diminished fecal PEDV RNA shedding. At 21 days, all surviving pigs were challenged orally with rPEDV-Ewt. No pigs died in the two groups. Compared with the mock group, significantly delayed and milder diarrhea and reduced fecal PEDV RNA shedding were detected in the rPEDV-EΔaa23-aa29 group. In conclusion, the deletion of a 7-aa fragment in the E protein (EΔaa23-aa29) attenuated PEDV but retained its immunogenicity, which can offer new ideas for the design of live attenuated vaccines and provide new insights into the attenuated mechanism of PEDV. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets and remains a large challenge to the pork industry. Unfortunately, no safe and effective vaccines are available yet. The pathogenesis and molecular basis of the attenuation of PEDV remain unclear, which seriously hinders the development of PEDV vaccines. This study found that the rPEDV carrying EΔaa23-aa29 mutation in the E protein induced significantly higher IFN responses than the parental virus, partially attenuated, and remained immunogenic in piglets. For the first time, PEDV E was verified as an IFN antagonist in the infection context and identified as a virulence factor of PEDV. Our data also suggested that EΔaa23-aa29 mutation can be a good target for the development of live attenuated vaccines for PEDV and also provide new perspectives for the attenuated mechanism of PEDV.
Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Proteínas del Envoltorio Viral , Animales , Infecciones por Coronavirus/veterinaria , Interferones , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/fisiología , ARN , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Atenuadas/genética , Eliminación de Secuencia , Proteínas del Envoltorio Viral/genéticaRESUMEN
RESEARCH HIGHLIGHTS: Development of nr-NDV.Reverse transfection was applied for the recovery of nr-NDV.Propagation of nr-NDV was done by sub-passaging transfected BSR T7/5 cells.Safety profile was done to prove that the nr-NDV is non-replicating.
RESUMEN
BACKGROUND: Canine distemper virus (CDV) is a pathogen with the capability of cross-species transmission. It has crossed the species barrier to infect many other species, and its host range is expanding. The reverse genetic platform, a useful tool for scientific research, allows the generation of recombinant viruses from genomic cDNA clones in vitro. METHODS: To improve the reverse genetic system of CDV, a plasmid containing three independent expression cassettes was constructed for co-expression of the N, P, and L genes and then transfected with a full-length cDNA clone of CDV into Vero cells. RESULTS: The results indicated that the established rescue system has the advantages of being more convenient, easy to control the transfection ratio, and high rescue efficiency compared with the conventional reverse genetics system. CONCLUSION: This method not only reduces the number of transfection plasmids, but also improves the rescue efficiency of CDV, which could provide a reference for the recovery of other morbilliviruses.
Asunto(s)
Virus del Moquillo Canino , Plásmidos , Virus del Moquillo Canino/genética , Animales , Células Vero , Chlorocebus aethiops , Plásmidos/genética , Transfección , Genética Inversa/métodos , ADN Complementario/genética , Moquillo/virologíaRESUMEN
Historically part of the coronavirus (CoV) family, torovirus (ToV) was recently classified in the new family Tobaniviridae. While reverse genetics systems have been established for various CoVs, none exist for ToVs. Here, we developed a reverse genetics system using an infectious full-length cDNA clone of bovine ToV (BToV) in a bacterial artificial chromosome (BAC). Recombinant BToV harboring genetic markers had the same phenotype as wild-type (wt) BToV. To generate two types of recombinant virus, the hemagglutinin-esterase (HE) gene was edited, as cell-adapted wtBToV generally loses full-length HE (HEf), resulting in soluble HE (HEs). First, recombinant viruses with HEf and hemagglutinin (HA)-tagged HEf or HEs genes were rescued. These exhibited no significant differences in their effect on virus growth in HRT18 cells, suggesting that HE is not essential for viral replication in these cells. Thereafter, we generated a recombinant virus (rEGFP) wherein HE was replaced by the enhanced green fluorescent protein (EGFP) gene. rEGFP expressed EGFP in infected cells but showed significantly lower levels of viral growth than wtBToV. Moreover, rEGFP readily deleted the EGFP gene after one passage. Interestingly, rEGFP variants with two mutations (C1442F and I3562T) in nonstructural proteins (NSPs) that emerged during passage exhibited improved EGFP expression, EGFP gene retention, and viral replication. An rEGFP into which both mutations were introduced displayed a phenotype similar to that of these variants, suggesting that the mutations contributed to EGFP gene acceptance. The current findings provide new insights into BToV, and reverse genetics will help advance the current understanding of this neglected pathogen. IMPORTANCE ToVs are diarrhea-causing pathogens detected in various species, including humans. Through the development of a BAC-based BToV, we introduced the first reverse genetics system for Tobaniviridae. Utilizing this system, recombinant BToVs with a full-length HE gene were generated. Remarkably, although clinical BToVs generally lose the HE gene after a few passages, some recombinant viruses generated in the current study retained the HE gene for up to 20 passages while accumulating mutations in NSPs, which suggested that these mutations may be involved in HE gene retention. The EGFP gene of recombinant viruses was unstable, but rEGFP into which two NSP mutations were introduced exhibited improved EGFP expression, gene retention, and viral replication. These data suggested the existence of an NSP-based acceptance or retention mechanism for exogenous RNA or HE genes. Recombinant BToVs and reverse genetics are powerful tools for understanding fundamental viral processes, pathogenesis, and BToV vaccine development.
Asunto(s)
ADN Complementario , Genoma Viral , Genética Inversa , Torovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Células Cultivadas , Cromosomas Artificiales Bacterianos , Clonación Molecular , Genes Reporteros , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Mutación , Plásmidos/genética , Torovirus/aislamiento & purificación , Infecciones por Torovirus , TransfecciónRESUMEN
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Asunto(s)
Citoesqueleto de Actina , Proteínas de la Cápside , Rotavirus , Citoesqueleto de Actina/metabolismo , Proteínas de la Cápside/metabolismo , Humanos , Lectinas , Genética Inversa , Rotavirus/genética , Rotavirus/fisiología , Infecciones por Rotavirus , Compartimentos de Replicación Viral , Replicación ViralRESUMEN
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.
Asunto(s)
Aminoácidos , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Proteínas no Estructurales Virales , Vacunas Virales , Aminoácidos/química , Aminoácidos/genética , Animales , Embrión de Pollo , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Femenino , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Vacunas Atenuadas/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Vacunas Virales/genéticaRESUMEN
Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.
Asunto(s)
Chaperonas Moleculares , Infecciones por Pestivirus , Pestivirus , Porcinos , Replicación Viral , Animales , Línea Celular , Coenzimas , Genoma Viral/genética , Interacciones Huésped-Patógeno , Chaperonas Moleculares/genética , Pestivirus/clasificación , Pestivirus/enzimología , Pestivirus/crecimiento & desarrollo , Infecciones por Pestivirus/veterinaria , ARN Viral/genética , Porcinos/virología , Enfermedades de los Porcinos/virología , Proteasas Virales/metabolismo , Replicación Viral/genéticaRESUMEN
Infectious bursal disease virus (IBDV) is an immunosuppressive pathogen causing enormous economic losses to the poultry industry across the globe. As a double-stranded RNA virus, IBDV undergoes genetic mutation or recombination in replication during circulation among flocks, leading to the generation and spread of variant or recombinant strains. In particular, the recent emergence of variant IBDV causes severe immunosuppression in chickens, affecting the efficacy of other vaccines. It seems that the genetic mutation of IBDV during the battle against host response is an effective strategy to help itself to survive. Therefore, a comprehensive understanding of the viral genome diversity will definitely help to develop effective measures for prevention and control of infectious bursal disease (IBD). In recent years, considerable progress has been made in understanding the relation of genetic mutation and genomic recombination of IBDV to its pathogenesis using the reverse genetic technique. Therefore, this review focuses on our current genetic insight into the IBDV's genetic typing and viral genomic variation.
Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Vacunas Virales/genética , Genómica , Infecciones por Birnaviridae/prevención & control , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & controlRESUMEN
The symbiont Vibrio fischeri uses motility to colonize its host. In numerous bacterial species, motility is negatively controlled by cyclic-di-GMP (c-di-GMP), which is produced by diguanylate cyclases (DGCs) with GGDEF domains and degraded by phosphodiesterases with either EAL or HD-GYP domains. To begin to decode the functions of the 50 Vibrio fischeri genes with GGDEF, EAL, and/or HD-GYP domains, we deleted each gene and assessed each mutant's migration through tryptone broth salt (TBS) soft agar medium containing or lacking magnesium (Mg) and calcium (Ca), which are known to influence V. fischeri motility. We identified 6, 13, and 16 mutants with altered migration in TBS-Mg, TBS, and TBS-Ca soft agar, respectively, a result that underscores the importance of medium conditions in assessing gene function. A biosensor-based assay revealed that Mg and Ca affected c-di-GMP levels negatively and positively, respectively; the severe decrease in c-di-GMP caused by Mg addition correlates with its strong positive impact on bacterial migration. A mutant defective for VF_0494, a homolog of V. cholerae rocS, exhibited a severe defect in migration across all conditions. Motility of a VF_1603 VF_2480 double mutant was also severely defective and could be restored by expression of "c-di-GMP-blind" alleles of master flagellar regulator flrA. Together, this work sheds light on the genes and conditions that influence c-di-GMP-mediated control over motility in V. fischeri and provides a foundation for (i) assessing roles of putative c-di-GMP-binding proteins, (ii) evaluating other c-di-GMP-dependent phenotypes in V. fischeri, (iii) uncovering potential redundancy, and (iv) deciphering signal transduction mechanisms. IMPORTANCE Critical bacterial processes, including motility, are influenced by c-di-GMP, which is controlled by environment-responsive synthetic and degradative enzymes. Because bacteria such as Vibrio fischeri use motility to colonize their hosts, understanding the roles of c-di-GMP-modulating enzymes in controlling motility has the potential to inform on microbe-host interactions. We leveraged recent advances in genetic manipulation to generate 50 mutants defective for putative c-di-GMP synthetic and degradative enzymes. We then assessed the consequences on motility, manipulating levels of magnesium and calcium, which inversely influenced motility and levels of c-di-GMP. Distinct subsets of the 50 genes were required under the different conditions. Our data thus provide needed insight into the functions of these enzymes and environmental factors that influence them.
Asunto(s)
Proteínas de Escherichia coli , Vibrio cholerae , Agar , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Calcio/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Magnesio/metabolismo , Vibrio cholerae/metabolismoRESUMEN
Black queen cell virus (BQCV) is a severe threat to the honeybee (Apis mellifera) worldwide. Although several BQCV strains have been reported in China, the molecular basis for BQCV pathogenicity has not been well understood. Thus, a reverse genetic system of BQCV is required for studying viral replication and its pathogenic mechanism. Here, the complete genome sequence of BQCV was obtained from honeybees using reverse transcription PCR (RT-PCR), namely a BQCV China-GS1 strain (KY741959). Then, a phylogenetic tree was built to analyse the genetic relationships among BQCV strains from different regions. Our results showed that the BQCV China-GS1 contained two ORFs, consistent with the known reference strains, except for the BQCV China-JL1 strain (KP119603). Furthermore, the infectious clone of BQCV was constructed based on BQCV China-GS1 using a low copy vector pACYC177 and gene recombination. Due to the lack of culture cells for bee viruses, we infected the healthy bees with infectious clone of BQCV, and the rescued BQCV resulted in the recovery of recombinant virus, which induced higher mortality than those of the control group. Immune response after inoculated with BQCV further confirmed that the infectious clone of BQCV caused the cellular and humoral immune response of honeybee (A. mellifera). In conclusion, the full nucleotide sequence of BQCV China-GS1 strain was determined, and the infectious clone of BQCV was constructed in this study. These data will improve the understanding of pathogenesis and the host immune responses to viral infection.
Asunto(s)
Dicistroviridae , Virus ARN , Virus , Animales , Abejas , Dicistroviridae/genética , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , Virus/genéticaRESUMEN
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.
Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Torovirus/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Mutación , Señales de Exportación Nuclear , Señales de Localización Nuclear , Proteínas de la Nucleocápside/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Torovirus/crecimiento & desarrollo , Torovirus/metabolismo , Replicación Viral/genéticaRESUMEN
To gain insight into the impact of mutations on the viability of the hepatitis C virus (HCV) genome, we created a set of full-genome mutant libraries, differing from the parent sequence as well as each other, by using a random mutagenesis approach; the proportion of mutations increased across these libraries with declining template amount or dATP concentration. The replication efficiencies of full-genome mutant libraries ranged between 71 and 329 focus-forming units (FFU) per 105 Huh7.5 cells. Mutant libraries with low proportions of mutations demonstrated low replication capabilities, whereas those with high proportions of mutations had their replication capabilities restored. Hepatoma cells transfected with selected mutant libraries, with low (4 mutations per 10,000 bp copied), moderate (33 mutations), and high (66 mutations) proportions of mutations, and their progeny were subjected to serial passage. Predominant virus variants (mutants) from these mutant libraries (Mutantl, Mutantm, and Mutanth, respectively) were evaluated for changes in growth kinetics and particle-to-FFU unit ratio, virus protein expression, and modulation of host cell protein synthesis. Mutantm and Mutantl variants produced >3.0-log-higher extracellular progeny per ml than the parent, and Mutanth produced progeny at a rate 1.0-log lower. More than 80% of the mutations were in a nonstructural part of the mutant genomes, the majority were nonsynonymous, and a moderate to large proportion were in the conserved regions. Our results suggest that the HCV genome has the ability to overcome lethal/deleterious mutations because of the high reproduction rate but highly selects for random, beneficial mutations.IMPORTANCE Hepatitis C virus (HCV) in vivo displays high genetic heterogeneity, which is partly due to the high reproduction and random substitutions during error-prone genome replication. It is difficult to introduce random substitutions in vitro because of limitations in inducing mutagenesis from the 5' end to the 3' end of the genome. Our study has overcome this limitation. We synthesized full-length genomes with few to several random mutations in the background of an HCV clone that can recapitulate all steps of the life cycle. Our study provides evidence of the capability of the HCV genome to overcome deleterious mutations and remain viable. Mutants that emerged from the libraries had diverse phenotype profiles compared to the parent, and putative adaptive mutations mapped to segments of the conserved nonstructural genome. We demonstrate the potential utility of our system for the study of sequence variation that ensures the survival and adaptation of HCV.
Asunto(s)
Genoma Viral , Hepacivirus/genética , Mutagénesis , Mutación , Línea Celular , Humanos , Modelos Moleculares , Fenotipo , Pase Seriado , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Virales/química , Proteínas Virales/genética , Replicación ViralRESUMEN
The segmented 18.5-kbp dsRNA genome of rotavirus expresses 6 structural and 6 nonstructural proteins. We investigated the possibility of using the recently developed plasmid-based rotavirus reverse genetics (RG) system to generate recombinant viruses that express a separate heterologous protein in addition to the 12 viral proteins. To address this, we replaced the NSP3 open reading frame (ORF) of the segment 7 (pT7/NSP3) transcription vector used in the RG system with an ORF encoding NSP3 fused to a fluorescent reporter protein (i.e., UnaG, mRuby, mKate, or TagBFP). Inserted at the fusion junction was a teschovirus translational 2A stop-restart element designed to direct the separate expression of NSP3 and the fluorescent protein. Recombinant rotaviruses made with the modified pT7/NSP3 vectors were well growing and generally genetically stable, and they expressed NSP3 and a separate fluorescent protein detectable by live cell imaging. NSP3 made by the recombinant viruses was functional, inducing nuclear accumulation of cellular poly(A)-binding protein. Further modification of the NSP3 ORF showed that it was possible to generate recombinant viruses encoding 2 heterologous proteins (mRuby and UnaG) in addition to NSP3. Our results demonstrate that, through modification of segment 7, the rotavirus genome can be increased in size to at least 19.8 kbp and can be used to produce recombinant rotaviruses expressing a full complement of viral proteins and multiple heterologous proteins. The generation of recombinant rotaviruses expressing fluorescent proteins will be valuable for the study of rotavirus replication and pathogenesis by live cell imagining and suggest that rotaviruses will prove useful as expression vectors.IMPORTANCE Rotaviruses are a major cause of severe gastroenteritis in infants and young children. Recently, a highly efficient reverse genetics system was developed that allows genetic manipulation of the rotavirus segmented double-stranded RNA genome. Using the reverse genetics system, we show that it is possible to modify one of the rotavirus genome segments (segment 7) such that virus gains the capacity to express a separate heterologous protein in addition to the full complement of viral proteins. Through this approach, we have generated wild-type-like rotaviruses that express various fluorescent reporter proteins, including UnaG (green), mRuby (far red), mKate (red), and TagBFP (blue). Such strains will be of value in probing rotavirus biology and pathogenesis by live cell imagining techniques. Notably, our work indicates that the rotavirus genome is remarkably flexible and able to accommodate significant amounts of heterologous RNA sequence, raising the possibility of using the virus as a vaccine expression vector.
Asunto(s)
Células Epiteliales/virología , Genoma Viral , ARN Viral/genética , Proteínas Recombinantes de Fusión/genética , Rotavirus/genética , Proteínas no Estructurales Virales/genética , Animales , Línea Celular , Cricetulus , Células Epiteliales/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Haplorrinos , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Plásmidos/química , Plásmidos/metabolismo , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Genética Inversa/métodos , Rotavirus/metabolismo , Teschovirus/genética , Teschovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Proteína Fluorescente RojaRESUMEN
Influenza virus is a common virus in people's daily lives, and it has certain infectivity in humans and animals. Influenza viruses have the characteristics of a high mutation rate and wide distribution. Reverse genetic technology is primarily used to modify viruses at the DNA level through targeted modification of the virus cDNA. Genetically modified influenza viruses have a unique advantage when researching the transmission and pathogenicity of influenza. With the continuous development of oncolytic viruses in recent years, studies have found that influenza viruses also have certain oncolytic activity. Influenza viruses can specifically recognize tumor cells; activate cytotoxic T cells, NK cells, dendritic cells, etc.; and stimulate the body to produce an immune response, thereby killing tumor cells. This article will review the development and application of influenza virus reverse genetic technology.
Asunto(s)
Orthomyxoviridae/genética , Genética Inversa , Animales , Humanos , Gripe Humana/virología , Orthomyxoviridae/fisiología , Proteínas Virales/fisiologíaRESUMEN
BACKGROUND: Akabane virus (AKAV) is an important insect-borne virus which is widely distributed throughout the world except the Europe and is considered as a great threat to herbivore health. RESULTS: An AKAV strain defined as TJ2016 was firstly isolated from the bovine sera in China in 2016. Sequence analysis of the S and M segments suggested that the isolated AKAV strain was closely related to the AKAV strains JaGAr39 and JaLAB39, which belonged to AKAV genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ2016 S, M, and L segment was constructed separately into the TVT7R plasmid at the downsteam of T7 promoter and named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. The above three plasmids were further transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to produce the rescued virus AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to be with similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells. CONCLUSION: We successfully isolated a AKAV strain TJ2016 from the sera of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool for further research on AKAV pathogenesis and even vaccine studies.
Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Animales , Infecciones por Bunyaviridae/virología , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Cricetinae , Genotipo , Orthobunyavirus/patogenicidad , Filogenia , Genética Inversa/veterinariaRESUMEN
Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.
Asunto(s)
Nicotiana/virología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Genética Inversa , Tombusvirus/genética , Enfermedades de las Plantas/virología , Tombusvirus/patogenicidadRESUMEN
Bunyaviruses have a tripartite negative-sense RNA genome. Due to the segmented nature of these viruses, if two closely related viruses coinfect the same host or vector cell, it is possible that RNA segments from either of the two parental viruses will be incorporated into progeny virions to give reassortant viruses. Little is known about the ability of tick-borne phleboviruses to reassort. The present study describes the development of minigenome assays for the tick-borne viruses Uukuniemi phlebovirus (UUKV) and Heartland phlebovirus (HRTV). We used these minigenome assays in conjunction with the existing minigenome system of severe fever with thrombocytopenia syndrome (SFTS) phlebovirus (SFTSV) to assess the abilities of viral N and L proteins to recognize, transcribe, and replicate the M segment-based minigenome of a heterologous virus. The highest minigenome activity was detected with the M segment-based minigenomes of cognate viruses. However, our findings indicate that several combinations utilizing N and L proteins of heterologous viruses resulted in M segment minigenome activity. This suggests that the M segment untranslated regions (UTRs) are recognized as functional promoters of transcription and replication by the N and L proteins of related viruses. Further, virus-like particle assays demonstrated that HRTV glycoproteins can package UUKV and SFTSV S and L segment-based minigenomes. Taken together, these results suggest that coinfection with these viruses could lead to the generation of viable reassortant progeny. Thus, the tools developed in this study could aid in understanding the role of genome reassortment in the evolution of these emerging pathogens in an experimental setting.IMPORTANCE In recent years, there has been a large expansion in the number of emerging tick-borne viruses that are assigned to the Phlebovirus genus. Bunyaviruses have a tripartite segmented genome, and infection of the same host cell by two closely related bunyaviruses can, in theory, result in eight progeny viruses with different genome segment combinations. We used genome analogues expressing reporter genes to assess the abilities of Phlebovirus nucleocapsid protein and RNA-dependent RNA polymerase to recognize the untranslated region of a genome segment of a related phlebovirus, and we used virus-like particle assays to assess whether viral glycoproteins can package genome analogues of related phleboviruses. Our results provide strong evidence that these emerging pathogens could reassort their genomes if they were to meet in nature in an infected host or vector. This reassortment process could result in viruses with new pathogenic properties.
Asunto(s)
Genoma Viral/genética , Phlebovirus/genética , Animales , Infecciones por Bunyaviridae/virología , Línea Celular , Mesocricetus , Filogenia , Regiones Promotoras Genéticas/genética , Garrapatas/virología , Proteínas no Estructurales Virales/genéticaRESUMEN
Quantitative physiological studies on Saccharomyces cerevisiae commonly use synthetic media (SM) that contain a set of water-soluble growth factors that, based on their roles in human nutrition, are referred to as B vitamins. Previous work demonstrated that in S. cerevisiae CEN.PK113-7D, requirements for biotin were eliminated by laboratory evolution. In the present study, this laboratory strain was shown to exhibit suboptimal specific growth rates when either inositol, nicotinic acid, pyridoxine, pantothenic acid, para-aminobenzoic acid (pABA), or thiamine was omitted from SM. Subsequently, this strain was evolved in parallel serial-transfer experiments for fast aerobic growth on glucose in the absence of individual B vitamins. In all evolution lines, specific growth rates reached at least 90% of the growth rate observed in SM supplemented with a complete B vitamin mixture. Fast growth was already observed after a few transfers on SM without myo-inositol, nicotinic acid, or pABA. Reaching similar results in SM lacking thiamine, pyridoxine, or pantothenate required more than 300 generations of selective growth. The genomes of evolved single-colony isolates were resequenced, and for each B vitamin, a subset of non-synonymous mutations associated with fast vitamin-independent growth was selected. These mutations were introduced in a non-evolved reference strain using CRISPR/Cas9-based genome editing. For each B vitamin, the introduction of a small number of mutations sufficed to achieve a substantially increased specific growth rate in non-supplemented SM that represented at least 87% of the specific growth rate observed in fully supplemented complete SM.IMPORTANCE Many strains of Saccharomyces cerevisiae, a popular platform organism in industrial biotechnology, carry the genetic information required for synthesis of biotin, thiamine, pyridoxine, para-aminobenzoic acid, pantothenic acid, nicotinic acid, and inositol. However, omission of these B vitamins typically leads to suboptimal growth. This study demonstrates that, for each individual B vitamin, it is possible to achieve fast vitamin-independent growth by adaptive laboratory evolution (ALE). Identification of mutations responsible for these fast-growing phenotypes by whole-genome sequencing and reverse engineering showed that, for each compound, a small number of mutations sufficed to achieve fast growth in its absence. These results form an important first step toward development of S. cerevisiae strains that exhibit fast growth on inexpensive, fully supplemented mineral media that only require complementation with a carbon source, thereby reducing costs, complexity, and contamination risks in industrial yeast fermentation processes.