Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2210433119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037376

RESUMEN

The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison (Bison bison) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle (Bos taurus). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m2) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change.


Asunto(s)
Biodiversidad , Bison , Pradera , Animales , Bovinos , Plantas
2.
Mol Ecol ; : e17562, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431302

RESUMEN

The composition and dynamics of the skin bacterial and fungal microbiome is thought to influence host-pathogen defence. This microbial community is shaped by host captivity, diet, and microbial interactions between bacterial and fungal components. However, there remains little understanding of how specific micronutrients influence bacterial and fungal microbiome composition and their inter-domain interactions during rewilding of captive-bred animals. This study experimentally investigated the effect of dietary beta-carotene supplementation and subsequent field release on bacterial and fungal microbiome composition and dynamics using the Southern Corroboree frog (Pseudophryne corroboree) as a model system. We found large-scale diversification of bacterial communities post-release and similar diversification of fungal communities. The rewilded fungal mycobiome was more transient and demonstrated stronger temporal and micro-spatial fluctuations than the bacterial microbiome. Accounting for temporal and spatial factors, we found strong residual associations between bacterial members, yet limited evidence for inter-domain associations, suggesting that co-occurrence patterns between bacterial and fungal communities are largely a result of shared responses to the environment rather than direct interactions. Lastly, we found supplementation of dietary beta-carotene in captivity had no impact on post-release microbiome diversity, yet was associated with approximately 15% of common bacterial and fungal genera. Our research demonstrates that environmental factors play a dominant role over dietary beta-carotene supplementation in shaping microbiome diversity post-release, and suggest inter-domain interactions may also only exert a minor influence. Further research on the function and ecology of skin bacterial and fungal microbiomes will be crucial for developing strategies to support survival of endangered amphibian species.

3.
J Anim Ecol ; 93(5): 606-618, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38414265

RESUMEN

Human-induced species declines and extinctions have led to the downsizing of large-herbivore assemblages, with implications for many ecosystem processes. Active reintroduction of extirpated large herbivores or their functional equivalents may help to reverse this trend and restore diverse ecosystems and their processes. However, it is unclear whether resource competition between native and non-native herbivores could threaten restoration initiatives, or to what extent (re)introduced species may influence local vegetation dynamics. To answer these questions, we investigated the diets of a novel South American herbivore assemblage that includes resident native species, reintroduced native species and introduced non-native species. We examined plant composition, diet breadth and the overlap between species to describe the local herbivory profile and the potential for resource competition. Using DNA metabarcoding on faecal samples (n = 465), we analysed the diets of the herbivore assemblage in the Rincón del Socorro rewilding area of Iberá National Park, Argentina. We compared the species richness of faecal samples, the occurrence of plant families/growth forms and the compositional similarity of samples (inter- and intraspecifically). Our results indicate species-level taxonomic partitioning of plant resources by herbivores in this system. Differences in sample richness, composition and diet breadth reflected a diverse range of herbivory strategies, from grazers (capybara) to mixed feeders/browsers (brocket deer, lowland tapir). Differences in diet compositional similarity (Jaccard) revealed strong taxonomic resource partitioning. The two herbivores with the most similar diets (Pampas deer and brocket deer) still differed by more than 80%. Furthermore, all but one species (axis deer) had more similar diet composition intraspecifically than compared to the others. Overall, we found little evidence for resource competition between herbivore species. Instead, recently reintroduced native species and historically introduced non-natives are likely expanding the range of herbivory dynamics in the ecosystem. Further research will be needed to determine the full ecological impacts of these (re)introduced herbivores. In conclusion, we show clear differences in diet breadth and composition among native, reintroduced and non-native herbivore species that may be key to promoting resource partitioning, species coexistence and the restoration of ecological function.


La disminución y extinción de especies ocasionada por el hombre ha llevado a la reducción de tamaño de las comunidades de grandes herbívoros, con implicaciones para muchos procesos ecosistémicos. La reintroducción activa de grandes herbívoros extirpados, o sus equivalentes funcionales, puede ayudar a revertir esta tendencia y restaurar diversos ecosistemas y sus procesos. Sin embargo, no está claro si la competencia por recursos entre herbívoros nativos y no nativos podría amenazar las iniciativas de restauración, o en qué medida las especies (re)introducidas pueden influir la dinámica de la vegetación local. Para responder a estas preguntas, investigamos las dietas de una comunidad de herbívoros sudamericanos que incluye especies nativas, especies nativas reintroducidas y especies no nativas introducidas. Examinamos la composición de plantas, la amplitud de la dieta y la superposición entre especies para describir el perfil herbívoro local y el potencial de competencia por los recursos. Utilizando metabarcoding de ADN en muestras fecales (n = 465), analizamos las dietas de la comunidad de herbívoros en el sitio de rewilding Rincón del Socorro dentro del Parque Nacional Iberá, Argentina. Comparamos la riqueza de especies en las muestras fecales, la ocurrencia de familias de plantas/formas de crecimiento y la similitud en la composición de las muestras (interespecíficamente e intraespecíficamente). Nuestros resultados indican la partición taxonómica a nivel de especie de los recursos vegetales por parte de los herbívoros en este sistema. Las diferencias en la riqueza de las muestras, la composición y la amplitud de las dietas reflejaron una amplia gama de estrategias de herbivoría, desde pastoreadores (capibara) hasta herbívoros mixtos/ramoneadores (corzuela, tapir amazónico). Las diferencias en la similitud de la composición de la dieta (Jaccard) revelaron una fuerte partición taxonómica de los recursos. Los dos herbívoros con las dietas más similares (venado de las pampas y corzuela), aún así diferían en más del 80%. Además, todas las especies menos una (ciervo axis) tenían una composición dietética más similar intraespecíficamente que en comparación con las demás. En general, encontramos poca evidencia de competencia por recursos entre las especies de herbívoros. En cambio, las especies nativas reintroducidas recientemente y las no nativas introducidas históricamente probablemente estén ampliando el rango de dinámica de herbivoría en el ecosistema. Se necesitarán más investigaciones para determinar todos los impactos ecológicos de estos herbívoros (re)introducidos. En conclusión, mostramos diferencias claras en la amplitud y composición de la dieta entre especies de herbívoros nativas, reintroducidas y no nativas que pueden ser clave para promover la partición de recursos, la coexistencia de especies y la restauración de las funciones ecológicas.


Asunto(s)
Dieta , Heces , Herbivoria , Especies Introducidas , Animales , Argentina , Dieta/veterinaria , Plantas
4.
Conserv Biol ; : e14318, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949045

RESUMEN

Rewilding, although controversial, is increasingly presented as humanity's best hope of addressing the global biodiversity crisis, but it remains unclear how restoring nonhuman autonomy affects people's relationships with nature. We conceptualized 3 human-nature relationships (HNRs) that could occur when restoring nonhuman autonomy: human-nature dichotomy, human-nature compromise, and human-nature mutualism. Through 51 interviews, we then empirically tested the occurrence of these HNRs across diverse actors living and working in 2 longstanding British rewilding initiatives to better understand the place for people in rewilding. Actors' HNRs aligned with the 3 conceptual framings, but these relationships were complex. Individuals often demonstrated multiple perspectives that transcended conventional actor categorization. The tripartite framing also revealed conflicting values across and within individuals, resulting in pluralistic HNRs. Our work adds to the theory and practice surrounding the place for people in rewilding by cautioning against a single preferred HNR when restoring nonhuman autonomy and advocating that a diversity of human interactions with nature should be integrated into the global rewilding movement.


El lugar de las personas en la renaturalización Resumen Aunque la renaturalización es controversial, se presenta cada vez más como la mejor esperanza para que la humanidad aborde la crisis mundial de biodiversidad, aunque todavía no está claro el efecto de la restauración de la autonomía no humana sobre las relaciones entre las personas y la naturaleza. Conceptualizamos tres relaciones humanidad­naturaleza (RHN) que podrían ocurrir al restaurar la autonomía no humana: dicotomía, equilibrio y mutualismo, todas entre los humanos y la naturaleza. Realizamos 51 entrevistas para probar de forma empírica la ocurrencia de estas RHN con varios actores que viven y trabajan dentro de las dos iniciativas británicas de renaturalización más antiguas y así entender mejor el lugar de las personas en la renaturalización. Las HNR de los actores se alinearon con los tres marcos conceptuales, aunque estas relaciones fueron complejas. Los individuos frecuentemente mostraron tener varias perspectivas que trascendían la categoría de los actores. El marco tripartito también reveló valores conflictivos entre y en los individuos, lo que resultó en RHN pluralistas. Nuestro trabajo suma a la teoría y práctica en torno al lugar de la gente en la renaturalización con la prevención de una sola relación humanidad­naturaleza preferida cuando se restaura la autonomía no humana y con la recomendación de que la diversidad de interacciones humanas con la naturaleza debería integrarse al movimiento mundial de renaturalización.

5.
Conserv Biol ; 38(4): e14276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38721859

RESUMEN

Restoring ecosystems is an imperative for addressing biodiversity loss and climate change, and achieving the targets of the Kunming-Montreal Global Biodiversity Framework. One form of restoration, rewilding, may have particular promise but may also be precluded by requirements for other forms of land use now or in the future. This opportunity space is critical but challenging to assess. We explored the potential area available for rewilding in Great Britain until the year 2080 with a multisectoral land-use model with several distinct climatic and socioeconomic scenarios. By 2080, areas from 5000 to 7000 km2 were either unmanaged or managed in ways that could be consistent with rewilding across scenarios without conflicting with the provision of ecosystem services. Beyond these areas, another 24,000-42,000 km2 of extensive upland management could provide additional areas for rewilding if current patterns of implementation hold in the future. None of these areas, however, coincided reliably with ecosystems of priority for conservation: peatlands, ancient woodlands, or wetlands. Repeatedly, these ecosystems were found to be vulnerable to conversion. Our results are not based on an assumption of support for or benefits from rewilding and do not account for disadvantages, such as potential losses of cultural landscapes or traditional forms of management, that were beyond the modeled ecosystem services. Nevertheless, potential areas for rewilding emerge in a variety of ways, from intensification elsewhere having a substantial but inadvertent land-sparing effect, popular demand for environmental restoration, or a desire for exclusive recreation among the wealthy elite. Our findings therefore imply substantial opportunities for rewilding in the United Kingdom but also a need for interventions to shape the nature and extent of that rewilding to maintain priority conservation areas and societal objectives.


Una evaluación del potencial futuro de la resilvestración en el Reino Unido Resumen La restauración de ecosistemas es urgente para abordar la pérdida de biodiversidad y el cambio climático, así como para lograr los objetivos del Marco Mundial de Biodiversidad de Kunming­Montreal. Un método de restauración, la resilvestración, puede ser particularmente prometedor, aunque también puede ser excluido por los requerimientos para otras formas de uso de suelo actuales o en el futuro. Este espacio de oportunidad es crítico, pero también un reto para evaluar. Exploramos el área potencial disponible para el resilvestrado en Gran Bretaña hasta el año 2080 con un modelo multisectorial de uso de suelo con varios escenarios climáticos y socioeconómicos. Para este año, las áreas entre 5,000 y 7,000 km2 no estaban gestionadas o lo estaban, pero de manera que podían ser consistentes con el resilvestrado de los escenarios sin conflictuar el suministro de servicios ambientales. Más allá de estas áreas, otros 24,000­42,000 km2 de gestión extensiva tierra arriba podrían proporcionar áreas adicionales para el resilvestrado si los patrones actuales de implementación siguen en pie en el futuro. Sin embargo, ninguna de estas áreas coincidió de manera confiable con los ecosistemas de prioridad para la conservación: las turberas, bosques antiguos o humedales. Estos ecosistemas aparecieron varias veces como vulnerables a la conversión. Nuestros resultados no están basados en una suposición de apoyo para o los beneficios de la resilvestración y no consideran las desventajas, como la pérdida potencial de paisajes culturales o las maneras tradicionales de manejo, que estaban fuera del alcance de los servicios ambientales modelados. Sin embargo, las áreas potenciales para el resilvestrado emergen en una variedad de formas, desde la intensificación en otros lugares con un efecto de ahorro de tierras sustancial pero inadvertido, la demanda popular por la restauración ambiental o el deseo de una recreación exclusiva entre la elite acaudalada. Por lo tanto, nuestros descubrimientos implican una oportunidad sustancial para la resilvestración en el Reino Unido, aunque también una necesidad de intervenciones para moldear la naturaleza y la extensión de ese resilvestrado para mantener las áreas prioritarias de conservación y los objetivos sociales.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Reino Unido
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431562

RESUMEN

We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Área de Conservación Guanacaste (ACG) in northwestern Costa Rica. ACG's natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or "insectometers," we see that ACG's insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient temperatures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG's many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Ecosistema , Insectos , Animales , Costa Rica , Extinción Biológica , Clima Tropical
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34580170

RESUMEN

African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages-declining wildlife populations and their displacement by livestock-may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana-tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.


Asunto(s)
Cynanchum/crecimiento & desarrollo , Ecosistema , Preferencias Alimentarias , Herbivoria/fisiología , Árboles/crecimiento & desarrollo , África , Animales , Animales Salvajes , Elefantes , Restauración y Remediación Ambiental , Jirafas , Humanos , Ganado
8.
J Environ Manage ; 355: 120430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428182

RESUMEN

The concept of rewilding, which focuses on managing ecosystem functions through self-regulation by restoring trophic interactions through introduced animal species with little human intervention, has gained increasing attention as a proactive and efficient approach to restoring ecosystems quickly and on a large scale. However, the science of rewilding has been criticized for being largely theory-based rather than evidence-based, with available data being geographically biased towards the Netherlands and Scandinavian countries, and a lack of objective data on rewilding effects on soil processes and C sequestration. In response to a call for data-driven experimental rewilding projects focused on national contexts, we collected unique data on the effects of large herbivore rewilding on soil properties from eight sites in the Czech Republic. These include sites with a wide range of edaphic characteristics that were grazed by Exmoor ponies, European bison, and back-bred Bos primigenius cattle (singly or in combination) for 2-6 years on areas ranging from ≈30 to ≈250 ha. Despite the relatively short duration of rewilding actions and considerable variability in the response rate of soil properties to grazing, our results indicate improved nutrient availability (evidenced by higher nitrification rate or higher soluble nitrogen concentration) and accelerated ecosystem metabolism (higher soil microbial biomass and dissolved carbon content). On longer-grazed pastures, rewilding contributed to soil carbon sequestration associated with increased water holding capacity and improved soil structure. However, other soil properties (reduced dissolved P concentration or total P content) showed signs of low P availability in the soils of the rewilding sites. Therefore, carcass retention should be considered where possible. Our data, although limited in number and geographic coverage, allow us to conclude that large ungulate rewilding has the potential to enhance soil carbon sequestration and related ecosystem services in rewilding areas. At the same time, we urge similar monitoring as an essential part of other rewilding projects, which will ultimately allow much more robust conclusions about the effects of this management on soils.


Asunto(s)
Ecosistema , Suelo , Animales , Bovinos , Caballos , Humanos , Suelo/química , Carbono , Herbivoria , Biomasa , Especies Introducidas
9.
J Environ Manage ; 355: 120413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442655

RESUMEN

Active and passive approaches to rewilding and ecological restoration are increasingly considered to promote nature recovery at scale. However, historical data on vegetation trajectories have rarely been used to inform decisions on whether active or passive management is most appropriate to aid recovery of a specific ecosystem, which can lead to sub-optimal approaches being deployed and reduced biodiversity benefits. To demonstrate how understanding past changes can inform future management strategies, this study used satellite remote sensing data to analyse the changes in land cover and primary productivity within the Greater Côa Valley in Portugal, which has experienced wide-scale land abandonment. Results show that some areas in the Valley regenerated well following land abandonment in the region, leading to a more heterogeneous landscape of habitats for wildlife, whereas in other areas passive recovery was slow. As Rewilding Portugal intensifies its nature recovery efforts in the region, this study calls for strategic deployment of passive and active approaches to maximise conservation benefits. More broadly, our results highlight how baseline vegetational trajectories and contextual information can help inform whether active or passive management approaches may be suitable on a site-by-site basis for both rewilding and restoration projects.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Biodiversidad , Animales Salvajes , Portugal
10.
Proc Biol Sci ; 290(2013): 20231095, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38087919

RESUMEN

European bison (Bison bonasus) were widespread throughout Europe during the late Pleistocene. However, the contributions of environmental change and humans to their near extinction have never been resolved. Using process-explicit models, fossils and ancient DNA, we disentangle the combinations of threatening processes that drove population declines and regional extinctions of European bison through space and across time. We show that the population size of European bison declined abruptly at the termination of the Pleistocene in response to rapid environmental change, hunting by humans and their interaction. Human activities prevented populations of European bison from rebounding in the Holocene, despite improved environmental conditions. Hunting caused range loss in the north and east of its distribution, while land use change was responsible for losses in the west and south. Advances in hunting technologies from 1500 CE were needed to simulate low abundances observed in 1870 CE. While our findings show that humans were an important driver of the extinction of the European bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition because of post-glacial environmental change. These areas of its former range have been climatically unsuitable for millennia and should not be considered in reintroduction efforts.


Asunto(s)
Bison , Animales , Humanos , Bison/genética , Europa (Continente) , Fósiles , Actividades Humanas , Caza
11.
Glob Chang Biol ; 29(8): 2141-2155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732877

RESUMEN

Grazing by large mammalian herbivores impacts climate as it can favor the size and stability of a large carbon (C) pool in the soils of grazing ecosystems. As native herbivores in the world's grasslands, steppes, and savannas are progressively being displaced by livestock, it is important to ask whether livestock can emulate the functional roles of their native counterparts. While livestock and native herbivores can have remarkable similarity in their traits, they can differ greatly in their impacts on vegetation composition which can affect soil-C. It is uncertain how these similarities and differences impact soil-C via their influence on microbial decomposers. We test competing alternative hypotheses with a replicated, long-term, landscape-level, grazing-exclusion experiment to ask whether livestock in the Trans-Himalayan ecosystem of northern India can match decadal-scale (2005-2016) soil-C stocks under native herbivores. We evaluate multiple lines of evidence from 17 variables that influence soil-C (quantity and quality of C-input from plants, microbial biomass and metabolism, microbial community composition, eDNA, veterinary antibiotics in soil), and assess their inter-relationships. Livestock and native herbivores differed in their effects on several soil microbial processes. Microbial carbon use efficiency (CUE) was 19% lower in soils under livestock. Compared to native herbivores, areas used by livestock contained 1.5 kg C m-2 less soil-C. Structural equation models showed that alongside the effects arising from plants, livestock alter soil microbial communities which is detrimental for CUE, and ultimately also for soil-C. Supporting evidence pointed toward a link between veterinary antibiotics used on livestock, microbial communities, and soil-C. Overcoming the challenges of sequestering antibiotics to minimize their potential impacts on climate, alongside microbial rewilding under livestock, may reconcile the conflicting demands from food-security and ecosystem services. Conservation of native herbivores and alternative management of livestock is crucial for soil-C stewardship to envision and achieve natural climate solutions.


Asunto(s)
Ecosistema , Herbivoria , Animales , Carbono , Ganado , Suelo/química , Plantas , Pradera , Mamíferos
12.
Ecol Appl ; 33(2): e2779, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36398530

RESUMEN

Restoration of degraded areas is now a central tool in humanity's response to continued species-loss. However, restoration projects often report exceedingly slow or failed recolonization of fauna, especially dispersal-constrained groups such as invertebrates. Active interventions via reintroducing or "rewilding" invertebrates may assist recolonization and speed up restoration of communities toward a desired target. However, invertebrate rewilding is rarely implemented during ecological restoration. Here, we studied the efficacy of invertebrate rewilding as a means of reintroducing dispersal-constrained species and improving diversity and compositional similarities to remnant communities during restoration. Rewilding was conducted by transplanting leaf litter and soil, including associated communities of invertebrates from species rich remnant sites into species poor, and geographically isolated, revegetated farmland sites. We sampled pre- and post-rewilding invertebrate communities in remnant, rewilded revegetation, and control revegetation sites. We analyzed morphospecies richness, abundance, community composition, and modeled morphospecies traits (dispersal method/trophic guild) using a Hierarchical Modelling of Species Communities approach to determine which biological properties facilitated establishment. Beetle (Coleoptera) morphospecies richness increased rapidly in rewilded sites and was indistinguishable from remnant communities as early as 7 months post-rewilding. Beetle community similarity in the rewilding sites significantly deviated from the control sites 27 months post-rewilding, however remnant communities remained distinct over the study timeframe. Establishment success varied as other taxa did not respond as consistently as beetles within the study timeframe. Furthermore, there were no discernible shifts in dispersal traits in rewilded sites. However, predatory morphospecies were more likely to establish post-rewilding than other trophic groups. Our results demonstrate that the relatively simple act of transplanting leaf litter can result in comparatively large increases in morphospecies richness during restoration in a short timeframe. We advocate methodologies such as ours should be adopted more frequently to address failed community restoration as they are cost-effective and can be easily applied by practitioners in various restoration settings. However, further efficacy tests (e.g., varying the number of rewilding events) and longer study timeframes are needed to ensure effectiveness for a broader range of invertebrate taxa and ecosystems.


Asunto(s)
Escarabajos , Ecosistema , Animales , Invertebrados/fisiología , Suelo , Biodiversidad
13.
Ecol Appl ; 33(3): e2810, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36694991

RESUMEN

Trophic rewilding aims to promote biodiverse self-sustaining ecosystems through the restoration of ecologically important taxa and the trophic interactions and cascades they propagate. How rewilding effects manifest across broad temporal scales will determine ecosystem states; however, our understanding of post-rewilding dynamics across longer time periods is limited. Here we show that the restoration of a megaherbivore, the African savannah elephant (Loxodonta africana), promotes landscape openness (i.e., various measures of vegetation composition/complexity) and modifies fauna habitat and that these effects continue to manifest up to 92 years after reintroduction. We conducted a space-for-time floristic survey and assessment of 17 habitat attributes (e.g., floristic diversity and cover, ground wood, tree hollows) across five comparable nature reserves in South African savannah, where elephants were reintroduced between 1927 and 2003, finding that elephant reintroduction time was positively correlated with landscape openness and some habitat attributes (e.g., large-sized tree hollows) but negatively associated with others (e.g., large-sized coarse woody debris). We then indexed elephant site occurrence between 2006 and 2018 using telemetry data and found positive associations between site occurrence and woody plant densities. Taken alongside the longer-term space-for-time survey, this suggests that elephants are attracted to dense vegetation in the short term and that this behavior increases landscape openness in the long term. Our results suggest that trophic rewilding with elephants helps promote a semi-open ecosystem structure of high importance for African biodiversity. More generally, our results suggest that megafauna restoration represents a promising tool to curb Earth's recent ecological losses and highlights the importance of considering long-term ecological responses when designing and managing rewilding projects.


Asunto(s)
Ecosistema , Elefantes , Animales , Conservación de los Recursos Naturales/métodos , Biodiversidad , Árboles
14.
Ecol Appl ; 33(2): e2758, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36193873

RESUMEN

In the context of global decline in old-growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross-disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech-fir (Fagus sylvatica-Abies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech-fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long-term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon-rich and highly biodiverse Mediterranean old-growth forests, which will be more resistant and resilient to future climate change.


Asunto(s)
Ecosistema , Fagus , Humanos , Bosques , Europa (Continente) , Ecología , Italia , Árboles
15.
Biol Lett ; 19(4): 20220544, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016814

RESUMEN

Soil-disturbing animals are common globally and play important roles in creating and maintaining healthy functional soils and landscapes. Yet many of these animals are threatened or locally extinct due to habitat loss, predation by non-native animals or poaching and poisoning. Some reintroduction and rewilding programmes have as their core aims to increase animal populations and reinstate processes that have been lost due to their extirpation. Here we use a meta-analytical approach to review the effects of soil-disturbing vertebrates on ecosystem processes, and advance the argument that they can be used to rehabilitate degraded ecosystems by altering mainly composition and function, but with fewer positive effects on structure. We describe four examples where the loss or reintroduction of soil-disturbing vertebrates leads to ecosystem state changes and highlight the role of spatial scale, covarying management changes, and species co-occurrence in modulating their effects. We discuss the advantages and disadvantages of using soil-disturbing vertebrates over mechanized engineering approaches such as pitting and furrowing, considering some advantages to include more self-sustainable and heterogeneous disturbances, creation of new habitats and added recreational values. Finally, we identify key knowledge gaps in our understanding of the use of soil-disturbing vertebrates for rehabilitating degraded ecosystems.


Asunto(s)
Ecosistema , Suelo , Animales , Suelo/química , Conservación de los Recursos Naturales , Vertebrados , Medición de Riesgo
16.
J Environ Manage ; 337: 117719, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948148

RESUMEN

Ecosystem engineering species, such as beavers, may help the restoration of biodiversity. Through the building of dams and lodges and altering the natural hydrology, beavers change the habitat structure and create multiple habitats that facilitate a wide variety of other organisms including terrestrial invertebrate communities. Here we study the effect of beaver reintroduction in Klosterheden in Denmark on biomass of flying invertebrates and diversity of moths. Further, aerial photos were used to assess riparian structure and productivity using the normalized difference vegetation index (NDVI). Our findings show that the presence of beavers affected flying invertebrate biomass, but that this was dependent on time of the year. Further, a strong effect of presence of beavers was found on diversity of moths. The results also show an increase in vegetation productivity and structural heterogeneity at sites with presence of beavers. Overall, our results demonstrate the importance of beavers as important ecosystem engineers that affect invertebrate species composition and abundance, as well as riparian structure and productivity.


Asunto(s)
Ecosistema , Roedores , Animales , Biodiversidad , Invertebrados , Insectos
17.
Environ Monit Assess ; 195(9): 1033, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563498

RESUMEN

Free-ranging grazers are increasingly being introduced to areas of high natural value, such as wetlands. There is also growing attention that has been paid to the historical role of herbivores in shaping ecosystems and landscapes. Even though studies on the grazing of free-range horses were carried out in different regions and climates, still little is known about their habitat selection on heterogeneous marshy areas in the temperate region of Europe. The aim of this study was to investigate the habitat use by contemporary Konik horses during the growing season on the basis of three-year GPS data for a semi-feral herd kept on wetlands. Almost 68% of the occurrence of Konik horses were in open habitats. The assessment of habitat selection by the horses confirmed their strong preferences for grasslands on mid-forest dunes and forest avoidance. Konik horses somewhat preferred mowed fen meadows, but the animals displayed differences in the selection of habitat, probably depending on its humidity and weather conditions in a given year which may limit the role of grazing in protecting these communities. Horses need different habitats in wetlands such as fen meadows, forest, and grasslands on the mineral hills. This should be taken into consideration for landscape management in areas where the introduction of wild or semi-wild horse populations is planned.


Asunto(s)
Ecosistema , Humedales , Caballos , Animales , Monitoreo del Ambiente , Equidae , Europa (Continente)
18.
Proc Biol Sci ; 289(1971): 20212222, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317678

RESUMEN

Land abandonment may decrease biodiversity but also provides an opportunity for rewilding. It is therefore necessary to identify areas that may benefit from traditional land management practices and those that may benefit from a lack of human intervention. In this study, we conducted comparative field surveys of butterfly occurrence in abandoned and inhabited settlements in 18 regions of diverse climatic zones in Japan to test the hypotheses that species-specific responses to land abandonment correlate with climatic niches and habitat preferences. Hierarchical models that unified species occurrence and habitat preferences revealed that negative responses to land abandonment were associated with species that have cold climatic niches and use open habitats, suggesting that species negatively impacted by land abandonment will decline more due to future climate warming. Maps representing species gains and losses due to land abandonment, which were created from the model estimates, showed similar geographical patterns, but some areas exhibited high species losses relative to gains. Our hierarchical modelling approach was useful for scaling up local-scale effects of land abandonment to a macro-scale assessment, which is crucial to developing spatial conservation strategies in the era of depopulation.


Asunto(s)
Mariposas Diurnas , Animales , Biodiversidad , Cambio Climático , Ecosistema , Humanos , Japón
19.
Glob Chang Biol ; 28(17): 5283-5293, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748709

RESUMEN

Mammals have experienced high levels of human-mediated extirpations but have also been widely introduced to new locations, and some have recovered from historic persecution. Both of these processes-losses and gains-have resulted in concern about functional losses and changes in ecological communities as new ecological states develop. The question of whether species turnover inevitably leads to declines in functional and phylogenetic diversity depends, however, on the traits and phylogenetic distinctiveness of the species that are lost, gained, or regained. Comparing ~8000 years ago with the last century, we show that extirpations and range retractions have indeed reduced the functional and phylogenetic diversity of mammals in most European regions (countries and island groups), but species recoveries and the introduction of non-native species have increased functional and phylogenetic diversity by equivalent or greater amounts in many regions. Overall, across Europe, species richness increased in 41 regions over the last 8000 years and declined in 1; phylogenetic diversity increased in 33 and declined in 12, while functional diversity results showed 20 increases and 25 decreases. The balance of losses (extirpations) and gains (introductions, range expansions) has, however, led to net increases in functional diversity on many islands, where the original diversity was low, and across most of western Europe. Historically extirpated mega- and mesofaunal species have recolonized or been reintroduced to many European regions, contributing to recent functional and phylogenetic diversity recovery. If conservation rewilding projects continue to reintroduce regionally extirpated species and domestic descendants of "extinct" species to provide replacement grazing, browsing, and predation, there is potential to generate net functional and phylogenetic diversity gains (relative to 8000 years ago) in most European regions.


Asunto(s)
Biodiversidad , Mamíferos , Animales , Biota , Europa (Continente) , Humanos , Filogenia
20.
Ecol Appl ; 32(3): e2531, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35019181

RESUMEN

Conventional conservation policies in Europe notably rely on the passive restoration of natural forest dynamics by setting aside forest areas to preserve forest biodiversity. However, since forest reserves cover only a small proportion of the territory, conservation policies also require complementary conservation efforts in managed forests in order to achieve the biodiversity targets set up in the Convention on Biological Diversity. Conservation measures also raise the question of large herbivore management in and around set-asides, particularly regarding their impact on understory vegetation. Although many studies have separately analyzed the effects of forest management, management abandonment, and ungulate pressure on forest biodiversity, their joint effects have rarely been studied in a correlative framework. We studied 212 plots located in 15 strict forest reserves paired with adjacent managed forests in European France. We applied structural equation models to test the effects of management abandonment, stand structure, and ungulate pressure on the abundance, species richness, and diversity of herbaceous vascular plants and terricolous bryophytes. We showed that stand structure indices and plot-level browsing pressure had direct and opposite effects on herbaceous vascular plant species diversity; these effects were linked with the light tolerance of the different species groups. Increasing canopy cover had an overall negative effect on herbaceous vascular plant abundance and species diversity. The effect was two to three times greater in magnitude than the positive effects of browsing pressure on herbaceous plants diversity. On the other hand, a high stand density index had a positive effect on the species richness and diversity of bryophytes, while browsing had no effect. Forest management abandonment had few direct effects on understory plant communities, and mainly indirectly affected herbaceous vascular plant and bryophyte abundance and species richness and diversity through changes in vertical stand structure. Our results show that conservation biologists should rely on foresters and hunters to lead the preservation of understory vegetation communities in managed forests since, respectively, they manipulate stand structure and regulate ungulate pressure. Their management actions should be adapted to the taxa at stake, since bryophytes and vascular plants respond differently to stand and ungulate factors.


Asunto(s)
Bosques , Tracheophyta , Biodiversidad , Ecosistema , Herbivoria , Plantas , Árboles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda