Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000433

RESUMEN

Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.


Asunto(s)
Sequías , Manihot , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Manihot/microbiología , Bacterias/clasificación , Bacterias/genética , ARN Ribosómico 16S/genética , Microbiota , Raíces de Plantas/microbiología , Suelo/química
2.
Plant Biotechnol J ; 21(2): 342-353, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278914

RESUMEN

The widespread application of isoproturon (IPU) can cause serious pollution to the environment and threaten ecological functions. In this study, the IPU bacterial N-demethylase gene pdmAB was transferred and expressed in the chloroplast of soybean (Glycine max L. 'Zhonghuang13'). The transgenic soybeans exhibited significant tolerance to IPU and demethylated IPU to a less phytotoxic metabolite 3-(4-isopropylphenyl)-1-methylurea (MDIPU) in vivo. The transgenic soybeans removed 98% and 84% IPU from water and soil within 5 and 14 days, respectively, while accumulating less IPU in plant tissues compared with the wild-type (WT). Under IPU stress, transgenic soybeans showed a higher symbiotic nitrogen fixation performance (with higher total nodule biomass and nitrogenase activity) and a more stable rhizosphere bacterial community than the WT. This study developed a transgenic (TS) soybean capable of efficiently removing IPU from its growing environment and recovering a high-symbiotic nitrogen fixation capacity under IPU stress, and provides new insights into the interactions between rhizosphere microorganisms and TS legumes under herbicide stress.


Asunto(s)
Glycine max , Suelo , Biodegradación Ambiental , Glycine max/genética , Glycine max/metabolismo , Compuestos de Fenilurea/metabolismo
3.
Microb Ecol ; 85(3): 965-979, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35641581

RESUMEN

Macrophyte rhizosphere microbes, as crucial components of the wetland ecosystem, play an important role in maintaining the function and stability of natural and constructed wetlands. Distinct environmental conditions and management practices between natural and constructed wetlands would affect macrophytes rhizosphere microbial communities and their associated functions. Nevertheless, the understanding of the diversity, composition, and co-occurrence patterns of the rhizosphere bacterial communities in natural and constructed wetlands remains unclear. Here, we used 16S rRNA gene high-throughput sequencing to characterize the bacterial community of the rhizosphere and bulk sediments of macrophyte Phragmites australis in representative natural and constructed wetlands. We observed higher alpha diversity of the bacterial community in the constructed wetland than that of the natural wetland. Additionally, the similarity of bacterial community composition between rhizosphere and bulk sediments in the constructed wetland was increased compared to that of the natural wetland. We also found that plants recruit specific taxa with adaptive functions in the rhizosphere of different wetland types. Rhizosphere samples of the natural wetland significantly enriched the functional bacterial groups that mainly related to nutrient cycling and plant-growth-promoting, while those of the constructed wetland-enriched bacterial taxa with potentials for biodegradation. Co-occurrence network analysis showed that the interactions among rhizosphere bacterial taxa in the constructed wetland were more complex than those of the natural wetland. This study broadens our understanding of the distinct selection processes of the macrophytes rhizosphere-associated microbes and the co-occurrence network patterns in different wetland types. Furthermore, our findings emphasize the importance of plant-microbe interactions in wetlands and further suggest P. australis rhizosphere enriched diverse functional bacteria that might enhance the wetland performance through biodegradation, nutrient cycling, and supporting plant growth.


Asunto(s)
Microbiota , Humedales , Rizosfera , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias , Microbiología del Suelo
4.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37824517

RESUMEN

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Asunto(s)
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrógeno/análisis , Antibacterianos , Bacterias/genética , Plantas , Suelo , Microbiología del Suelo
5.
Ecotoxicol Environ Saf ; 249: 114388, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508810

RESUMEN

Soil heavy metal pollution is one of the most serious environmental problems in China, especially cadmium (Cd), which has the most extensive contaminated soil coverage. Therefore, more economical and efficient remediation methods and measures are needed to control soil Cd contamination. In this study, different amendments (biochar (B), organic fertilizer (F), lime (L)) and actinomycetes (A) inoculants were applied to Cd contaminated farmland to explore their effects on wheat growth. Compared with Control, all treatments except A treatment were able to significantly increase the underground parts dry mass of wheat, with the highest increase of 57.19 %. The results showed that the B treatment significantly increased the plant height of wheat by 3.45 %. All treatments increased wheat SOD activity and chlorophyll content and reduced the MDA, which contributes to wheat stress resistance under Cd contamination. F, L and AF treatments can significantly reduce the Cd content in wheat above- and underground parts by up to 56.39 %. Soil amendments can modify the physical and chemical properties of the soil, which in turn affects the absorption of Cd by wheat. Moreover, the addition of soil amendments significantly affects the composition and structure of the rhizospheric soil bacterial community at the wheat jointing stage. The application of organic fertilizer increases the richness and diversity of the bacterial community, while lime makes it significantly decreases it. T-test and microbiome co-occurrence networks show that actinomycetes could not only effectively colonize in local soil, but also effectively enhance the complexity and stability of the rhizosphere microbial community. Considering the practical impact of different treatments on wheat, soil microorganisms, economic benefits and restoration of soil Cd contamination, the application of organic fertilizer and actinomycetes in Cd contaminated soil is a more ideal remediation strategy. This conclusion can be further verified by studying larger repair regions and longer consecutive repair cycles to gain insight into the repair mechanism.


Asunto(s)
Actinobacteria , Cadmio , Restauración y Remediación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Actinobacteria/metabolismo , Cadmio/análisis , Cadmio/metabolismo , Carbón Orgánico/química , Granjas , Fertilizantes , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Triticum/crecimiento & desarrollo
6.
Ecotoxicol Environ Saf ; 263: 115218, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441947

RESUMEN

Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.


Asunto(s)
Género Iris , Metales Pesados , Microbiota , Contaminantes del Suelo , Cromo/toxicidad , Cromo/metabolismo , Género Iris/metabolismo , Rizosfera , Microbiología del Suelo , Metales Pesados/toxicidad , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/análisis
7.
J Sci Food Agric ; 103(12): 5970-5980, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37114712

RESUMEN

BACKGROUND: There is currently an increase in the use of new types of fertilizers in modern agriculture. Studies have shown that amino acid fertilizers can improve crop yield and quality. However, their effects on crop rhizosphere ecology and their ecological impacts on crop yield are largely unknown. This study evaluated the effects of a water-soluble amino acid fertilizer (WAAF) on tomatoes and its ecological effects on rhizosphere bacterial communities using greenhouse pot experiments. RESULTS: The results showed that WAAF could promote the growth of tomatoes and improve the quality of fruits more effectively than water-soluble chemical fertilizer controls. Interestingly, WAAF showed a different regulating pattern on root exudates and increased the secretion of 17 major water-soluble root exudates, including hexadecanoic acid and 3-hydroxy-γ-butyrolactone. Water-soluble amino acid fertilizer also affected noticeably the composition, abundance, and beta-diversity of rhizosphere bacterial communities, and strengthened the potential relationships between community members. Water-soluble amino acid fertilizer showed a significant selective enrichment ability and recruited some members of the genera such as Cupriavidus, Ralstonia, Chitinophaga, Gemmatimonas, Mitsuaria, Mucilaginibacter, Paracoccus, Sphingopyxis, and Variovorax. Network analysis and functional prediction implied that, besides fertilizer effects, the recruiting of beneficial microbes involved in chemotaxis and biofilm formation was also a considerable factor in tomato yield and quality improvement. CONCLUSION: Our study revealed ecological and recruiting effects of WAAF on rhizosphere microbes and potentially beneficial microbiota, and provided a basis for the amino acid fertilizer regulation of rhizosphere ecology to improve soil health and further improve crop yield and quality. © 2023 Society of Chemical Industry.


Asunto(s)
Fertilizantes , Solanum lycopersicum , Suelo/química , Solanum lycopersicum/química , Rizosfera , Bacteroidetes , Aminoácidos/química
8.
Environ Geochem Health ; 45(8): 6177-6198, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269417

RESUMEN

Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Humanos , Cadmio/análisis , Rizosfera , Metales Pesados/análisis , Suelo/química , Zea mays/metabolismo , Contaminantes del Suelo/análisis , Microbiología del Suelo
9.
BMC Microbiol ; 22(1): 57, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168566

RESUMEN

BACKGROUND: Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS: Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS: Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.


Asunto(s)
Bacterias/genética , Cadmio/análisis , Contaminación Ambiental , Glycine max/crecimiento & desarrollo , Rizosfera , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Cadmio/metabolismo , China , Productos Agrícolas/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , ARN Ribosómico 16S/genética , Suelo/química , Glycine max/microbiología , Zea mays/microbiología
10.
Arch Microbiol ; 204(1): 15, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894277

RESUMEN

Plant rhizosphere bacterial communities are central to plant growth and stress tolerance, which differ across cultivars and external environments. The goal of this study was to assess the comprehensive effects of salt stress and peanut cultivars on rhizosphere bacterial community diversity. In this study, we investigated the effects of salt stress on peanut morphology and pod yield and the associated rhizosphere bacterial diversity using statistical analysis and 16S rRNA gene sequencing, respectively. Statistical analysis exhibited that salt stress indeed affected peanut growth and pod yield, and various peanut cultivars showed divergences. Taxonomic analysis showed that the bacterial community predominantly consisted of phyla Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Cyanobacteria in peanut rhizosphere soils. Among these bacteria, numbers of beneficial bacteria Cyanobacteria and Proteobacteria increased, especially in the salt-resistant cultivars, while that of Acidobacteria decreased after salt treatment. Nitrogen-fixing bacterium Rhizobium closely related to peanut nodulation was significantly improved in rhizosphere soils of salt-resistant cultivars after salt treatment. Metabolic function prediction showed that the percentages of reads categorized to signaling transduction and inorganic ion transport and metabolism were higher in the salt-treated soils, which may be conducive to peanut survival and salt tolerance to some extent. The study is, therefore, crucially important to develop the foundation for improving the salt tolerance of various peanut cultivars via modifying the soil bacterial community.


Asunto(s)
Cianobacterias , Rizosfera , Arachis , Cianobacterias/genética , Filogenia , Raíces de Plantas , ARN Ribosómico 16S/genética , Estrés Salino , Microbiología del Suelo
11.
Ecotoxicol Environ Saf ; 212: 111996, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33545409

RESUMEN

Rhizosphere microbes are essential partners for plant stress tolerance. Recent studies indicate that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils contaminated by heavy metals though interacting with rhizosphere microbiome. However, it is unclear how AMF affect rhizosphere microbiome to improve the growth of plant under rare earth elements (REEs) stress. AMF (Claroideoglomus etunicatum) was inoculated to maize grown in soils spiked with Lanthanum (0 mg kg-1, La0; 10 mg kg-1, La10; 100 mg kg-1, La100; 500 mg kg-1, La500). Plant biomass, nutrient uptake, REE uptake and rhizosphere bacterial and fungal community were evaluated. The results indicated that La100 and La500 decreased significantly root colonization rates and nutrition uptake (K, P, Ca and Mg content). La500 decreased significantly α-diversity indexes of bacterial and fungal community. AMF enhanced significantly the shoot and root fresh and dry weight of maize in all La treatments (except for the root fresh and dry weight of La0 and La10 treatment). For La100 and La500 treatments, AMF increased significantly nutrition uptake (K, P, Ca and Mg content) in shoot of maize by 27.40-441.77%. For La500 treatment, AMF decreased significantly shoot La concentration by 51.53% in maize, but increased significantly root La concentration by 30.45%. In addition, AMF decreased bacterial and fungal Shannon index in La0 treatment, but increased bacterial Shannon index in La500 treatment. Both AMF and La500 affected significantly the bacterial and fungal community composition, and AMF led to more influence than La. AMF promoted the enrichment of bacteria, including Planomicrobium, Lysobacter, Saccharothrix, Agrococcus, Microbacterium, Streptomyces, Penicillium and other unclassified genus, and fungi (Penicillium) in La500, which showed the function for promoting plant growth and tolerance of heavy metal. The study revealed that AMF can regulate the rhizosphere bacterial and fungal composition and foster certain beneficial microbes to enhance the tolerance of maize under La stress. Phytoremediation assisted by AMF is an attractive approach to ameliorate REEs-contaminated soils.


Asunto(s)
Hongos/crecimiento & desarrollo , Lantano/toxicidad , Micorrizas/fisiología , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Zea mays/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Glomeromycota/crecimiento & desarrollo , Lantano/análisis , Microbiota , Raíces de Plantas/química , Raíces de Plantas/microbiología , Suelo/química , Contaminantes del Suelo/análisis , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
12.
Curr Genomics ; 19(1): 36-49, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29491731

RESUMEN

BACKGROUND: The worldwide use of glyphosate has dramatically increased, but also has been raising concern over its impact on mineral nutrition, plant pathogen, and soil microbiota. To date, the bulk of previous studies still have shown different results on the effect of glyphosate application on soil rhizosphere microbial communities. OBJECTIVE: This study aimed to clarify whether glyphosate has impact on nitrogen-fixation, pathogen or disease suppression, and rhizosphere microbial community of a soybean EPSPS-transgenic line ZUTS31 in one growth season. METHOD: Comparative analysis of the soil rhizosphere microbial communities was performed by 16S rRNA gene amplicons sequencing and shotgun metagenome sequencing analysis between the soybean line ZUTS31 foliar sprayed with diluted glyphosate solution and those sprayed with water only in seed-filling stage. RESULTS: There were no significant differences of alpha diversity but with small and insignificant difference of beta diversity of soybean rhizosphere bacteria after glyphosate treatment. The significantly enriched Gene Ontology (GO) terms were cellular, metabolic, and single-organism of biological process together with binding, catalytic activity of molecular function. The hits and gene abundances of some functional genes being involved in Plant Growth-Promoting Traits (PGPT), especially most of nitrogen fixation genes, significantly decreased in the rhizosphere after glyphosate treatment. CONCLUSION: Our present study indicated that the formulation of glyphosate-isopropylamine salt did not significantly affect the alpha and beta diversity of the rhizobacterial community of the soybean line ZUTS31, whereas it significantly influenced some functional genes involved in PGPT in the rhizosphere during the single growth season.

13.
Can J Microbiol ; 64(12): 925-936, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30114373

RESUMEN

The characteristics of the rhizosphere microbial community across different cultivation years (from 1, 3, 5, 15, 20, and 50 years) in saline-alkaline paddy soils in Songnen Plain of China were investigated based on sequence variation of 16S rDNA using Illumina MiSeq sequencing. The results showed that the microbial community diversity varied across cultivation years, showing higher diversity in cultivation years >15 than in cultivation years <15. The dominant microbial community of the rhizosphere was mainly composed of Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. Furthermore, soil microbial diversity appeared to be affected directly by changes in soil properties corresponding to cultivated years. Diversity of Proteobacteria decreased as cultivated years increased; however, that of Acidobacteria showed the opposite direction. In addition, the soil microbial communities were clustered into two main groups: one from the sites cultivated for fewer than 15 years, and the other from the sites cultivated for more than 15 years. The abundance of nitrogen-fixing microorganisms in the soil sample was significantly higher in soils cultivated for under 15 years than in those cultivated for over 15 years (P < 0.05). Moreover, there was an obvious negative correlation between the cultivated years and Methanosarcina. Our findings on the dynamics of microbial community and its specific function in response to variable soil conditions are important for understanding and improving physical and chemical characteristics of saline-alkaline soil in Songnen Plain of China.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbiota , Rizosfera , Microbiología del Suelo
14.
World J Microbiol Biotechnol ; 34(1): 8, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236189

RESUMEN

Fertilization is a key agricultural practice for increasing millet yields and influencing soil properties, enzyme activities and rhizosphere bacterial communities. High throughput Illumina sequencing of the 16S rDNA was applied to compare the bacterial community structures and diversities among six different soil samples. The experiments involved the following: no fertilizer (CK), phosphate (P) and potassium (K) plus organic manure (M) (PKM), nitrogen (N) and K plus M (NKM), NPM, NPK and NPKM fertilization. The results showed that the NPKM fertilization of the millet field had a maximal yield of 3617 kg ha-1 among the six different treatments. The abundances of the Actinobacteria and Bacteroidetes phyla, especially the Devosia, Mycobacterium, Opitutus and Chitinophaga genera, were higher in NPKM than those in the other samples. Redundancy analysis showed that the soil organic matter (SOM), available phosphorus (AP), and urease (UR) activity were significantly correlated with bacterial communities, while SOM and AP were strongly correlated with soil enzyme activities. Pearson's correlation showed that the available nitrogen was strongly correlated with Devosia and Mycobacterium, and SOM was strongly correlated with Opitutus and Chitinophaga. Besides, catalase was significantly related to Iamia, the UR was significantly related to Devosia, phosphatase was significantly related to Luteimonas and Chitinophaga. Based on the soil quality and millet yield, NPKM treatment was a better choice for the millet field fertilization practices. These findings provide a better understanding of the importance of fertilization in influencing millet yield, soil fertility and microbial diversity, and they lead to a choice of scientific fertilization practices for sustainable development of the agroecosystem.


Asunto(s)
Activación Enzimática/efectos de los fármacos , Estiércol , Consorcios Microbianos/efectos de los fármacos , Mijos/microbiología , Minerales/farmacología , Rizosfera , Microbiología del Suelo , Agricultura , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/genética , Biodiversidad , Biomasa , China , Grano Comestible/microbiología , Fertilizantes , Secuenciación de Nucleótidos de Alto Rendimiento , Consorcios Microbianos/genética , Minerales/análisis , Nitrógeno/análisis , Nitrógeno/farmacología , Fosfatos , Potasio , ARN Ribosómico 16S/genética , Suelo/química
15.
Phytopathology ; 106(7): 719-28, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27050572

RESUMEN

Potato common scab (PCS), caused by pathogenic Streptomyces spp., is a serious disease in potato production worldwide. Cultural practices, such as optimizing the soil pH and irrigation, are recommended but it is often difficult to establish stable disease reductions using these methods. Traditionally, local farmers in southwest Japan have amended soils with rice bran (RB) to suppress PCS. However, the scientific mechanism underlying disease suppression by RB has not been elucidated. The present study showed that RB amendment reduced PCS by repressing the pathogenic Streptomyces population in young tubers. Amplicon sequencing analyses of 16S ribosomal RNA genes from the rhizosphere microbiome revealed that RB amendment dramatically changed bacterial composition and led to an increase in the relative abundance of gram-positive bacteria such as Streptomyces spp., and this was negatively correlated with PCS disease severity. Most actinomycete isolates derived from the RB-amended soil showed antagonistic activity against pathogenic Streptomyces scabiei and S. turgidiscabies on R2A medium. Some of the Streptomyces isolates suppressed PCS when they were inoculated onto potato plants in a field experiment. These results suggest that RB amendment increases the levels of antagonistic bacteria against PCS pathogens in the potato rhizosphere.


Asunto(s)
Agricultura/métodos , Enfermedades de las Plantas/prevención & control , Microbiología del Suelo , Solanum tuberosum/microbiología , Streptomyces/fisiología , Actinobacteria/fisiología , Antibiosis , Interacciones Huésped-Patógeno , Oryza , Filogenia , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/microbiología
16.
J Environ Manage ; 179: 93-102, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27219351

RESUMEN

Heavy metals (HMs) are one of the major ecological problem related to human activities. Phytoremediation is a promising "green technology" for soil and water reclamation, and it can be improved by means of the use of chelants. In the past particular attention was paid on the effects of HMs and/or chelants on plant health, but much less on their effects on rhizosphere communities. To shed light on the interaction among plant-HM-chelant-rhizobacterial community a pot experiment was set up. Maize plants were grown on uncontaminated, multi-metal (copper and zinc) contaminated and chelants artificially amended soils. A high concentration of HMs was detected in the different maize organs; chelants improved the accumulation capacity of the maize plants. The rhizosphere bacterial community isolated from control plants showed the largest biodiversity in terms of bacterial genera. However, the addition of HMs reduced the number of taxa to three: Bacillus, Lysinibacillus and Pseudomonas. The effects of HM treatment were counteracted by the addition of chelants in terms of the genetic biodiversity. Furthermore, several bacterial strains particularly resistant to HMs and chelants were isolated and selected. Our study suggests that the combined use of resistant bacteria and chelants could improve the phytoremediation capacity of maize.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/toxicidad , Rizosfera , Contaminantes del Suelo/toxicidad , Zea mays/microbiología , Bacillus/efectos de los fármacos , Bacterias/efectos de los fármacos , Quelantes , Cobre/farmacocinética , Cobre/toxicidad , Ácido Edético/farmacología , Etilenodiaminas/farmacología , Metales Pesados/farmacocinética , Consorcios Microbianos/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Succinatos/farmacología , Distribución Tisular , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zinc/farmacocinética , Zinc/toxicidad
17.
Comput Struct Biotechnol J ; 23: 1288-1297, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38560279

RESUMEN

Carbon materials are commonly used for soil carbon sequestration and fertilization, which can also affect crop growth by manipulating the rhizosphere bacterial community. However, the comparison of the differences between active carbon (e.g., organic fertilizers) and stable carbon (e.g., biochar) on rhizosphere microdomains is still unclear. Hence, a trial was implemented to explore the influence of control (CK, no fertilizer; NPK, chemical fertilizer), organic fertilizer (CF-O, organic fertilizer; CF-BO, biochar-based organic fertilizer) and biochar material (CF-B, perishable garbage biochar; CF-PMB, pig manure biochar) on the diversity, composition, and interaction of rice rhizosphere bacterial community through 16 S rRNA gene high-throughput sequencing. Our results demonstrate that organic fertilizer increases bacterial alpha-diversity compared to no-carbon supply treatment to the extend, whereas biochar has the opposite effect. The rhizosphere bacterial community composition showed pronounced variations among the various fertilization treatments. The relative abundance in Firmicutes decreased with organic fertilizer application, whereas that in Chloroflexi and Actinobacteria decreased with biochar application. Bacterial network analysis demonstrate that organic fertilizer enhances the complexity and key taxa of bacterial interactions, while biochar exhibits an opposing trend. The findings of our study indicate that organic fertilizer may contribute to a positive and advantageous impact on bacterial diversity and interaction in rice rhizosphere, whereas the influence of biochar is not as favorable and constructive. This study lays the foundation for elucidating the fate of the rhizosphere bacterial community following different carbon material inputs in the context of sustainable agricultural development.

18.
Front Microbiol ; 15: 1337435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444812

RESUMEN

Constructed wetlands are an efficient and cost-effective method of restoring degraded wetlands, in which the microorganisms present make a significant contribution to the ecosystem. In this study, we comprehensively investigated the patterns of diversity and assembly processes of 7 types of constructed wetlands at the rhizosphere and phyllosphere levels. The results showed that the rhizosphere communities of the constructed wetlands exhibited a more balanced structure than that of paddy fields, and 5 types of constructed wetland demonstrated higher potential diversity than that of paddy fields. However, the opposite trend was observed for the phyllosphere communities. Analysis of mean nearest taxon difference indicated that both deterministic and stochastic processes affected the establishment of the rhizosphere and phyllosphere communities, and stochastic processes may have had a larger effect. An iCAMP model showed that dispersal limitation was the most important factor (67% relative contribution) in the rhizosphere community, while drift was the most important (47% relative contribution) in the phyllosphere community. Mantel tests suggested that sucrase, average height, top height, total biomass, belowground biomass, maximum water-holding capacity, and capillary porosity were significantly correlated with processes in the rhizosphere community, whereas factors such as the deterministic process, average height, top height, and SOC were significantly correlated with deterministic processes in the phyllosphere community. Our results can assist in the evaluation of artificial restorations, and can provide understanding of the ecological processes of microbial communities, as well as new insights into the manipulation of microorganisms in polluted wetland ecosystems.

19.
J Hazard Mater ; 473: 134618, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761764

RESUMEN

The widespread application of antibiotics and plastic films in agriculture has led to new characteristics of soil pollution. The impacts of combined contamination of microplastics and antibiotics on plant growth and rhizosphere soil bacterial community and metabolisms are still unclear. We conducted a pot experiment to investigate the effects of polyethylene (0.2%) and norfloxacin/doxycycline (5 mg kg-1), as well as the combination of polyethylene and antibiotics, on the growth, rhizosphere soil bacterial community and metabolisms of wheat and maize seedlings. The results showed that combined contamination caused more serious damage to plant growth than individual contamination, and aggravated root oxidative stress responses. The diversity and structure of soil bacterial community were not markedly altered, but the composition of the bacterial community, soil metabolisms and metabolic pathways were altered. The co-occurrence network analysis indicated that combined contamination may inhibit the growth of wheat and maize seedings by simplifying the interrelationships between soil bacteria and metabolites, and altering the relative abundance of specific bacteria genera (e.g. Kosakonia and Sphingomonas) and soil metabolites (including sugars, organic acids and amino acids). The results help to elucidate the potential mechanisms of phytotoxicity of the combination of microplastic and antibiotics.


Asunto(s)
Antibacterianos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Antibacterianos/farmacología , Antibacterianos/toxicidad , Microplásticos/toxicidad , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Norfloxacino/farmacología , Norfloxacino/toxicidad , Polietileno/toxicidad
20.
Sci Total Environ ; 947: 174333, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945231

RESUMEN

The rhizosphere microorganisms of blueberry plants have long coexisted with their hosts under distinctively acidic soil conditions, exerting a profound influence on host performance through mutualistic symbiotic interactions. Meanwhile, plants can regulate rhizosphere microorganisms by exerting host effects to meet the functional requirements of plant growth and development. However, it remains unknown how the developmental stages of blueberry plants affect the structure, function, and interactions of the rhizosphere microbial communities. Here, we examined bacterial communities and root metabolites at three developmental stages (flower and leaf bud development stage, fruit growth and development stage, and fruit maturation stage) of blueberry plants. The results revealed that the Shannon and Chao 1 indices as well as community composition varied significantly across all three developmental stages. The relative abundance of Actinobacteria significantly increased by 10 % (p < 0.05) from stage 1 to stage 2, whereas that of Proteobacteria decreased significantly. The co-occurrence network analysis revealed a relatively complex network with 1179 edges and 365 nodes in the stage 2. Niche breadth was highest at stage 2, while niche overlap tended to increase as the plant developed. Furthermore, the untargeted metabolome analysis revealed that the number of differential metabolites of vitamins, nucleic acids, steroids, and lipids increased between stage 1 to stage2 and stage 2 to stage 3, while those for differential metabolites of carbohydrates and peptides decreased. Significant changes in expression levels of levan, L-glutamic acid, indoleacrylic acid, oleoside 11-methyl ester, threo-syringoylglycerol, gingerglycolipid B, and bovinic acid were highly correlated with the bacterial community structure. Collectively, our study reveals that significant alterations in dominant bacterial taxa are strongly correlated with the dynamics of root metabolites. These findings lay the groundwork for developing prebiotic products to enhance the beneficial effects of root microorganisms and boosting blueberry productivity via a sustainable approach.


Asunto(s)
Arándanos Azules (Planta) , Microbiota , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Arándanos Azules (Planta)/microbiología , Arándanos Azules (Planta)/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Suelo/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda