Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Cell ; 170(3): 457-469.e13, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753425

RESUMEN

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.


Asunto(s)
Arrestinas/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Cromatografía Liquida , Humanos , Ratones , Modelos Moleculares , Fosforilación , Ratas , Rodopsina/metabolismo , Alineación de Secuencia , Espectrometría de Masas en Tándem , Rayos X
2.
Mol Cell ; 84(18): 3530-3544.e6, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39232582

RESUMEN

Channelrhodopsins are microbial light-gated ion channels that can control the firing of neurons in response to light. Among several cation channelrhodopsins identified in Guillardia theta (GtCCRs), GtCCR4 has higher light sensitivity than typical channelrhodopsins. Furthermore, GtCCR4 shows superior properties as an optogenetic tool, such as minimal desensitization. Our structural analyses of GtCCR2 and GtCCR4 revealed that GtCCR4 has an outwardly bent transmembrane helix, resembling the conformation of activated G-protein-coupled receptors. Spectroscopic and electrophysiological comparisons suggested that this helix bend in GtCCR4 omits channel recovery time and contributes to high light sensitivity. An electrophysiological comparison of GtCCR4 and the well-characterized optogenetic tool ChRmine demonstrated that GtCCR4 has superior current continuity and action-potential spike generation with less invasiveness in neurons. We also identified highly active mutants of GtCCR4. These results shed light on the diverse structures and dynamics of microbial rhodopsins and demonstrate the strong optogenetic potential of GtCCR4.


Asunto(s)
Bacteriorodopsinas , Neuronas , Optogenética , Animales , Humanos , Potenciales de Acción , Bacteriorodopsinas/metabolismo , Bacteriorodopsinas/genética , Bacteriorodopsinas/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Criptófitas/genética , Criptófitas/metabolismo , Células HEK293 , Activación del Canal Iónico/efectos de la radiación , Luz , Mutación , Neuronas/metabolismo , Neuronas/efectos de la radiación , Optogenética/métodos , Relación Estructura-Actividad
3.
Annu Rev Cell Dev Biol ; 33: 241-264, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28598695

RESUMEN

Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non-image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.


Asunto(s)
Drosophila melanogaster/metabolismo , Opsinas/metabolismo , Animales , Drosophila melanogaster/efectos de la radiación , Ojo/metabolismo , Ojo/efectos de la radiación , Luz , Modelos Biológicos
4.
Trends Biochem Sci ; 48(2): 172-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36163145

RESUMEN

Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.


Asunto(s)
Retina , Segmento Externo de la Célula en Bastón , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/patología , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo
5.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421315

RESUMEN

Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.


Asunto(s)
Visión de Colores , Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Opsinas/genética , Opsinas/metabolismo , Visión de Colores/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética , Células Fotorreceptoras de Invertebrados/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
6.
Mol Cell ; 75(4): 781-790.e3, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31300275

RESUMEN

Rhodopsin (Rho), a prototypical G-protein-coupled receptor (GPCR) in vertebrate vision, activates the G-protein transducin (GT) by catalyzing GDP-GTP exchange on its α subunit (GαT). To elucidate the determinants of GT coupling and activation, we obtained cryo-EM structures of a fully functional, light-activated Rho-GT complex in the presence and absence of a G-protein-stabilizing nanobody. The structures illustrate how GT overcomes its low basal activity by engaging activated Rho in a conformation distinct from other GPCR-G-protein complexes. Moreover, the nanobody-free structures reveal native conformations of G-protein components and capture three distinct conformers showing the GαT helical domain (αHD) contacting the Gßγ subunits. These findings uncover the molecular underpinnings of G-protein activation by visual rhodopsin and shed new light on the role played by Gßγ during receptor-catalyzed nucleotide exchange.


Asunto(s)
Complejos Multiproteicos/química , Rodopsina/química , Transducina/química , Animales , Bovinos , Microscopía por Crioelectrón , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Estructura Secundaria de Proteína , Rodopsina/metabolismo , Transducina/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985767

RESUMEN

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Asunto(s)
Grafito , Hidrógeno , Shewanella , Hidrógeno/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafito/metabolismo , Hidrogenasas/metabolismo , Hidrogenasas/genética , Transporte de Electrón , Reactores Biológicos , Biología Sintética/métodos , Electrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fuentes de Energía Bioeléctrica/microbiología
8.
Proc Natl Acad Sci U S A ; 121(12): e2318996121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478688

RESUMEN

Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.


Asunto(s)
Diterpenos , Retinaldehído , Rodopsina , Isomerismo , Conformación Proteica , Rodopsina/metabolismo , Retinaldehído/química
9.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743626

RESUMEN

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Rodopsina , Animales , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Ratones , Rodopsina/genética , Rodopsina/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Miopía/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Oscuridad , Transducina/genética , Transducina/metabolismo , Técnicas de Sustitución del Gen , Modelos Animales de Enfermedad
10.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126699

RESUMEN

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Asunto(s)
Retinopatía Diabética , Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Retina/metabolismo , Degeneración Retiniana/metabolismo , Retinitis Pigmentosa/metabolismo , Degeneración Macular/patología , Retinopatía Diabética/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(13): e2220728120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943890

RESUMEN

Spectral tuning of visual pigments often facilitates adaptation to new environments, and it is intriguing to study the visual ecology of pelagic sharks with secondarily expanded habitats. The whale shark, which dives into the deep sea of nearly 2,000 meters besides near-surface filter feeding, was previously shown to possess the 'blue-shifted' rhodopsin (RHO), which is a signature of deep-sea adaptation. In this study, our spectroscopy of recombinant whale shark RHO mutants revealed that this blue shift is caused dominantly by an unprecedented spectral tuning site 94. In humans, the mutation at the site causes congenital stationary night blindness (CSNB) by reducing the thermal stability of RHO. Similarly, the RHO of deep-diving whale shark has reduced thermal stability, which was experimentally shown to be achieved by site 178 and 94. RHOs having the natural substitution at site 94 are also found in some Antarctic fishes, suggesting that the blue shift by the substitution at the CSNB site associated with the reduction in thermal stability might be allowed in cold-water deep-sea habitats.


Asunto(s)
Rodopsina , Tiburones , Humanos , Animales , Rodopsina/genética , Mutación , Tiburones/genética , Regiones Antárticas
12.
Proc Natl Acad Sci U S A ; 120(39): e2307638120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722052

RESUMEN

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.


Asunto(s)
Diatomeas , Rodopsina , Rodopsina/genética , Fitoplancton/genética , Protones , Regiones Antárticas , Transporte Iónico , Diatomeas/genética
13.
Proc Natl Acad Sci U S A ; 120(1): e2214276120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577071

RESUMEN

Rhodopsin is the pigment that enables night vision, whereas cone opsins are the pigments responsible for color vision in bright-light conditions. Despite their importance for vision, cone opsins are poorly characterized at the molecular level compared to rhodopsin. Spectra and kinetics of the intermediate states of human green-cone visual pigment (mid-wavelength sensitive, or MWS opsin) were measured and compared with the intermediates and kinetics of bovine rhodopsin. All the major intermediates of the MWS opsin were recorded in the picosecond to millisecond time range. Several intermediates in MWS opsin appear to have characteristics similar to the intermediates of bovine rhodopsin; however, there are some marked differences. One of the most striking differences is in their kinetics, where the kinetics of the MWS opsin intermediates are slower compared to those of the bovine rhodopsin intermediates.


Asunto(s)
Visión de Colores , Opsinas de los Conos , Humanos , Animales , Bovinos , Rodopsina , Cinética , Temperatura , Opsinas de Bastones , Opsinas , Células Fotorreceptoras Retinianas Conos
14.
Trends Biochem Sci ; 46(12): 1017-1029, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34538727

RESUMEN

Class A G protein-coupled receptors have evolved to recognize ligands ranging from small-molecule odorants to proteins. Although they are among the most diverse membrane receptors in eukaryotic organisms, they possess a highly conserved core within their seven-transmembrane helix framework. The conservation of the transmembrane core has led to the idea of a common mechanism by which ligand binding is coupled to the outward rotation of helix H6, the hallmark of an active receptor. Nevertheless, there is still no consensus on the mechanism of coupling or on the roles of specific residues within the core. Recent insights from crystallography and NMR spectroscopy provide a way to decompose the core into its essential structural and functional elements that shed new light on this important region.


Asunto(s)
Receptores Acoplados a Proteínas G , Ligandos , Espectroscopía de Resonancia Magnética , Receptores Acoplados a Proteínas G/metabolismo
15.
J Neurosci ; 44(36)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39089885

RESUMEN

Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.


Asunto(s)
Degeneración Retiniana , Rodopsina , Xenopus laevis , Animales , Rodopsina/metabolismo , Rodopsina/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Femenino , Masculino , Fototransducción , Luz/efectos adversos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , cis-trans-Isomerasas/metabolismo , cis-trans-Isomerasas/genética , Muerte Celular
16.
J Biol Chem ; 300(10): 107797, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39305959

RESUMEN

Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif. The ion-transport assay revealed that they function as light-driven inward anion pumps similar to halorhodopsins previously found in archaea and bacteria. Based on the characteristic glycine residue in their motif and light-driven anion-pumping function, these new rhodopsins are called glycylhalorhodopsins (GHRs). X-ray crystallographic analysis found large cavities on the cytoplasmic side, which are produced by the small side-chain volume of the glycine residue in the motif. The opened structure of GHR on the cytoplasmic side is related to the anion releasing process to the cytoplasm during the photoreaction compared to canonical halorhodopsin from Natronomonas pharaonis (NpHR). GHR also transports SO42- and the extracellular glutamate residue plays an essential role in extracellular SO42- uptake. In summary, we have identified TTG motif-containing microbial rhodopsins that display an anion-releasing mechanism.

17.
J Biol Chem ; 300(1): 105527, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043801

RESUMEN

Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.


Asunto(s)
Bivalvos , Fototransducción , Opsinas , Animales , Bivalvos/genética , Bivalvos/fisiología , Opsinas/genética , Opsinas/fisiología , Filogenia
18.
J Biol Chem ; 300(9): 107712, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178949

RESUMEN

Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.


Asunto(s)
Cloruros , Halobacteriaceae , Halorrodopsinas , Halorrodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/genética , Cloruros/metabolismo , Cloruros/química , Halobacteriaceae/metabolismo , Halobacteriaceae/química , Halobacteriaceae/genética , Sitios de Unión , Transporte Iónico , Transporte Biológico
19.
J Biol Chem ; 300(4): 107175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499150

RESUMEN

High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.


Asunto(s)
Evolución Molecular , Visión Nocturna , Rodopsina , Animales , Luz , Visión Nocturna/fisiología , Rodopsina/química , Rodopsina/metabolismo , Vertebrados , Opsinas de los Conos/química , Opsinas de los Conos/metabolismo
20.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237683

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Asunto(s)
Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bovinos , Pavos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda