Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Toxicol Pathol ; 50(6): 776-786, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801382

RESUMEN

A retrospective study was performed to establish the causes of mortality and incidence patterns of tumors in young (<50 weeks) control CD-1® mice from Charles River Laboratories. Tumor incidences (fatal and nonfatal) and nonneoplastic causes of death observed during the first 50 weeks of the study were collected from 48 thirteen-week toxicity studies conducted between 2009 and 2018 and from 43 carcinogenicity studies conducted between 2005 and 2018. Thirteen-week studies had a mortality rate of 8/620 (1.3%) in males and 4/620 (0.65%) in females. The major factors contributing to death were integument lesions in males (3/8) and experimental procedure-related injuries in females (3/4). All tumors recorded were nonfatal. Bronchiolo-alveolar adenoma was the commonest tumor with the same incidence in both males and females (4/620, 0.65%); a single lymphoma (0.16%) and uterine leiomyosarcoma (1/620 0.16%) were reported in females. The mortality rates of males and females that died or were euthanized during the first 50 weeks in carcinogenicity studies were 192/2830 (6.8%) and 198/2830 (7%), respectively. The most common fatal tumor in this age group was lymphoma in both sexes, with an incidence of 18/192 (9.3%) and 41/198 (20.7%) in males and females, respectively. In males tumors were responsible for fewer deaths than in females (17% vs. 32.3%). The major nonneoplastic causes of death or moribundity were cutaneous lesions (44/192, 22.9%), and obstructive uropathy (39/192, 20.3%) in males, and chronic progressive nephropathy (40/198, 20.2%) in females. Only minor differences were evident compared to a similar study performed 15 years ago; these might reflect changes in terminology and diagnostic criteria, and stricter animal welfare endpoints.


Asunto(s)
Adenoma , Animales , Pruebas de Carcinogenicidad , Femenino , Masculino , Ratones , Ratas , Ratas Endogámicas F344 , Estudios Retrospectivos
2.
Toxicol Pathol ; 49(8): 1377-1388, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338059

RESUMEN

Drug responses are often unpredictable in juvenile animal toxicity studies; hence, optimizing dosages is challenging. Renal functional differences based on age of development will often result in vastly different toxicologic responses. Developmental changes in renal function can alter plasma clearance of compounds with extensive renal elimination. Absorption, distribution, metabolism, and excretion of drugs vary depending on animal age and kidney maturation. Toxicity can result in malformations or renal degeneration. Although renal morphologic development in humans generally occurs in utero, maximal levels of tubular secretion, acid-base equilibrium, concentrating ability, or glomerular filtration rate (GFR) are reached postnatally in humans and animals and subject to drug effects. Maturation of renal metabolism and transporters occurs postnatally and plays a critical role in detoxification and excretion. Maturation times must be considered when designing juvenile toxicity studies and may require cohorts of animals of specific ages to achieve optimal dosing schemes and toxicokinetics. In recent years, critical end points and windows of susceptibility have been established comparatively between species to better model pharmacokinetics and understand pediatric nephrotoxicity. There are examples of agents where toxicity is enhanced in neonates, others where it is diminished, and others where rat nephrotoxicity is expressed as juvenile toxicity, but in humans as gestational toxicity.


Asunto(s)
Riñón , Roedores , Animales , Tasa de Filtración Glomerular , Humanos , Ratas
3.
Toxicol Pathol ; 47(8): 1049-1071, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31833458

RESUMEN

During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.


Asunto(s)
Disruptores Endocrinos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Reproducción/efectos de los fármacos , Animales , Congresos como Asunto , Femenino , Desarrollo Fetal/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/embriología , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Especificidad de la Especie , Testículo/efectos de los fármacos , Testículo/embriología , Testículo/patología , Útero/efectos de los fármacos , Útero/embriología , Útero/patología
4.
Toxicol Pathol ; 47(7): 851-864, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31558096

RESUMEN

Carcinogenesis of the small intestine is rare in humans and rodents. Oral exposure to hexavalent chromium (Cr(VI)) and the fungicides captan and folpet induce intestinal carcinogenesis in mice. Previously (Toxicol Pathol. 330:48-52), we showed that B6C3F1 mice exposed to carcinogenic concentrations of Cr(VI), captan, or folpet for 28 days exhibited similar histopathological responses including villus enterocyte cytotoxicity and regenerative crypt epithelial hyperplasia. Herein, we analyze transcriptomic responses from formalin-fixed, paraffin-embedded duodenal sections from the aforementioned study. TempO-Seq technology and the S1500+ gene set were used to analyze transcription responses. Transcriptional responses were similar between all 3 agents; gene-level comparison identified 126/546 (23%) differentially expressed genes altered in the same direction, with a total of 25 upregulated pathways. These changes were related to cellular metabolism, stress, inflammatory/immune cell response, and cell proliferation, including upregulation in hypoxia inducible factor 1 (HIF-1) and activator protein 1 (AP1) signaling pathways, which have also been shown to be related to intestinal injury and angiogenesis/carcinogenesis. The similar molecular-, cellular-, and tissue-level changes induced by these 3 carcinogens can be informative for the development of an adverse outcome pathway for intestinal cancer.


Asunto(s)
Captano/toxicidad , Carcinógenos/toxicidad , Cromo/toxicidad , Intestino Delgado/efectos de los fármacos , Ftalimidas/toxicidad , Animales , Perfilación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones
5.
J Toxicol Pathol ; 29(3 Suppl): 1S-47S, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27621537

RESUMEN

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach.

6.
Toxicol Pathol ; 43(8): 1114-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26289556

RESUMEN

The cell of origin of hepatoblastoma (HB) in humans and mice is unknown; it is hypothesized to be a transformed hepatocyte, oval cell, or hepatic progenitor cell. In mice, current dogma is that HBs arise from preexisting hepatocellular neoplasms as a result of further neoplastic transformation. However, there is little evidence supporting this direct relationship. To better understand the relationship between hepatocellular carcinoma (HCC) and HB and determine molecular similarities between mouse and human HB, global gene expression analysis and targeted mutation analysis were performed using HB, HCC, and adjacent liver from the same animals in a recent National Toxicology Program bioassay. There were significant differences in Hras and Ctnnb1 mutation spectra, and by microarray, HBs showed dysregulation of embryonic development, stem cell pluripotency, and genomic imprinting compared to HCC. Meta-analysis showed similarities between HB, early mouse embryonic liver, and hepatocyte-derived stem/progenitor cells compared to HCC. Our data show that there are striking differences between HB and HCC and suggest that HB is a significantly different entity that may arise from a hepatic precursor cell. Furthermore, mouse HB is similar to the human disease at the pathway level and therefore is likely a relevant model for evaluating human cancer hazard.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Animales , Carcinoma Hepatocelular/metabolismo , Hepatoblastoma/metabolismo , Humanos , Inmunohistoquímica , Hígado/química , Neoplasias Hepáticas/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Patología Molecular , Toxicología
7.
Toxicol Pathol ; 43(4): 457-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25869578

RESUMEN

Renal tubule lesions often prove troublesome for toxicologic pathologists because of the diverse nature and interrelated cell types within the kidney and the presence of spontaneous lesions with overlapping morphologies similar to those induced by renal toxicants. Although there are a number of guidance documents available citing straightforward diagnostic criteria of tubule lesions for the pathologist to refer to, most are presented without further advice on the when to or to the why and the why not of diagnosing one lesion over another. Documents presenting diagnostic perspectives and recommendations derived from an author's experience are limited since guidance documents are generally based on descriptive observations. In this Regulatory Forum opinion piece, the authors attempt to dispel confusing renal tubule lesion terminology in laboratory animal species by suggesting histological advice on the recognition and interpretation of these complex entities.


Asunto(s)
Neoplasias Renales/patología , Túbulos Renales/patología , Patología/métodos , Terminología como Asunto , Toxicología/métodos , Animales , Investigación Biomédica , Femenino , Neoplasias Renales/inducido químicamente , Neoplasias Renales/diagnóstico , Túbulos Renales/efectos de los fármacos , Masculino , Ratones , Patología/normas , Ratas , Toxicología/normas
8.
Toxicol Pathol ; 43(2): 272-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24771081

RESUMEN

Information about the incidence of spontaneously occurring, nonneoplastic background findings in Syrian hamsters is essential if Syrian hamsters are to be used for toxicity studies. Male and female Syrian hamsters of the strain Han:AURA from the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM) breeding colony were maintained as control animals for carcinogenicity studies and were examined for the presence of nonneoplastic background findings either when they died or when the study was terminated. The nonneoplastic background lesions observed at an incidence of >50% (high), >25% (moderate), and >10% (low) in either male or female animals or in both sexes in one or more long-term studies are detailed. The results are compared to previous published reports of nonneoplastic, spontaneous background lesions in Syrian hamsters. Background information about the incidence of background lesions in Syrian hamsters on short- and long-term studies is useful to both toxicologists and toxicological pathologists.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/patología , Pruebas de Carcinogenicidad , Mesocricetus/fisiología , Patología/normas , Toxicología/normas , Enfermedades de los Animales/mortalidad , Animales , Cricetinae , Femenino , Incidencia , Masculino , Neoplasias/epidemiología , Neoplasias/patología , Estándares de Referencia
9.
Toxicol Pathol ; 43(5): 730-2, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25530274

RESUMEN

The International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice proposal (INHAND) has been operational since 2005. A Global Editorial Steering Committee manages the overall objectives of the project, and the development of harmonized terminology for each organ system is the responsibility of the Organ Working Groups, drawing upon experts from North America, Europe, and Japan. Great progress has been made with 9 systems published to date--respiratory, hepatobiliary, urinary, central/peripheral nervous systems, male reproductive and mammary, zymbals, clitoral, and preputial glands in Toxicologic Pathology and the integument and soft tissue and female reproductive in the Journal of Toxicologic Pathology as supplements and on a Web site--www.goReni.org. INHAND nomenclature guides offer diagnostic criteria and guidelines for recording lesions observed in rodent toxicity and carcinogenicity studies. The guides provide representative photomicrographs of morphologic changes, information regarding pathogenesis, and key references. The purpose of this brief communication is to provide an update on the progress of INHAND.


Asunto(s)
Investigación Biomédica/normas , Guías como Asunto , Patología/normas , Terminología como Asunto , Toxicología/normas , Animales , Ratones , Ratas , Proyectos de Investigación
10.
Toxicol Pathol ; 42(2): 339-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23531795

RESUMEN

This short review is derived from the peer-reviewed literature and the experience and case materials of the authors. Brief illustrated summaries are presented on the gross and histologic normal anatomy of rodent and macaque placentas, including typical organ weights, with comments on differences from the human placenta. Common incidental findings, background lesions, and induced toxic lesions are addressed, and a recommended strategy for pathologic evaluation of placentas is provided.


Asunto(s)
Placenta/patología , Animales , Femenino , Histocitoquímica , Humanos , Patología , Placenta/química , Embarazo , Toxicología
11.
Vet Pathol ; 50(3): 563-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23645617

RESUMEN

Urinary system toxicity is a significant concern to pathologists in the hazard identification, drug and chemical safety evaluation, and diagnostic service industries worldwide. There are myriad known human and animal urinary system toxicants, and investigatory renal toxicology and pathology is continually evolving. The system-specific Research Triangle Park (RTP) Rodent Pathology Course biennially serves to update scientists on the latest research, laboratory techniques, and debates. The Sixth RTP Rodent Pathology Course, Urinary Pathology, featured experts from the government, pharmaceutical, academic, and diagnostic arenas sharing the state of the science in urinary pathology. Speakers presented on a wide range of topics including background lesions, treatment-related non-neoplastic and neoplastic lesions, transgenic rodent models of human disease, diagnostic imaging, biomarkers, and molecular analyses. These seminars were accompanied by case presentation sessions focused on usual and unusual lesions, grading schemes, and tumors.


Asunto(s)
Patología Veterinaria , Enfermedades de los Roedores/patología , Sistema Urinario/patología , Enfermedades Urológicas/veterinaria , Animales , Modelos Animales de Enfermedad , Humanos , Roedores , Enfermedades Urológicas/patología
12.
J Toxicol Pathol ; 26(3 Suppl): 27S-57S, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25035577

RESUMEN

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) project is a joint initiative of the societies of toxicological pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP). Its aim is to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory rodents. A widely accepted international harmonization of nomenclature in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and will provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists. The purpose of this publication is to provide a standardized nomenclature for classifying microscopical lesions observed in the integument of laboratory rats and mice. Example colour images are provided for most lesions. The standardized nomenclature presented in this document and additional colour images are also available electronically at http://www.goreni.org. The nomenclature presented herein is based on histopathology databases from government, academia, and industrial laboratories throughout the world, and covers lesions that develop spontaneously as well as those induced by exposure to various test materials. (DOI: 10.1293/tox.26.27S; J Toxicol Pathol 2013; 26: 27S-57S).

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda