Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Plant Biol ; 24(1): 633, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971752

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) experiences many negative effects under salinity stress, which may be mediated by recurrent selection. Salt-tolerant alfalfa may display unique adaptations in association with rhizobium under salt stress. RESULTS: To elucidate inoculation effects on salt-tolerant alfalfa under salt stress, this study leveraged a salt-tolerant alfalfa population selected through two cycles of recurrent selection under high salt stress. After experiencing 120-day salt stress, mRNA was extracted from 8 random genotypes either grown in 0 or 8 dS/m salt stress with or without inoculation by Ensifer meliloti. Results showed 320 and 176 differentially expressed genes (DEGs) modulated in response to salinity stress or inoculation x salinity stress, respectively. Notable results in plants under 8 dS/m stress included upregulation of a key gene involved in the Target of Rapamycin (TOR) signaling pathway with a concomitant decrease in expression of the SNrK pathway. Inoculation of salt-stressed plants stimulated increased transcription of a sulfate-uptake gene as well as upregulation of the Lysine-27-trimethyltransferase (EZH2), Histone 3 (H3), and argonaute (AGO, a component of miRISC silencing complexes) genes related to epigenetic and post-transcriptional gene control. CONCLUSIONS: Salt-tolerant alfalfa may benefit from improved activity of TOR and decreased activity of SNrK1 in salt stress, while inoculation by rhizobiumstimulates production of sulfate uptake- and other unique genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Tolerancia a la Sal , Medicago sativa/genética , Medicago sativa/fisiología , Medicago sativa/microbiología , Tolerancia a la Sal/genética , Estrés Salino/genética , Salinidad , Sinorhizobium meliloti/fisiología , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología
2.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967784

RESUMEN

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Asunto(s)
Bacterias , Productos Agrícolas , Estrés Salino , Microbiología del Suelo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Desarrollo de la Planta , Tolerancia a la Sal , Reguladores del Crecimiento de las Plantas/metabolismo , Suelo/química , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Salinidad
3.
Environ Res ; 251(Pt 2): 118722, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499223

RESUMEN

The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.


Asunto(s)
Polihidroxialcanoatos , Salinidad , Tolerancia a la Sal , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo
4.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257394

RESUMEN

This study delved into the influence of ecological and seasonal dynamics on the synthesis of secondary metabolites in the medicinal halophyte Limonium algarvense Erben, commonly known as sea lavender, and examined their antioxidant and anti-inflammatory properties. Aerial parts of sea lavender were systematically collected across winter, spring, summer, and autumn seasons from distinct geographic locations in southern Portugal, specifically "Ria de Alvor" in Portimão and "Ria Formosa" in Tavira. The investigation involved determining the total polyphenolic profile through spectrophotometric methods, establishing the chemical profile via liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), and evaluating in vitro antioxidant properties using radical and metal-based methods, along with assessing anti-inflammatory capacity through a cell model. Results unveiled varying polyphenol levels and profiles across seasons, with spring and autumn samples exhibiting the highest content, accompanied by the most notable antioxidant and anti-inflammatory capacities. Geographic location emerged as an influential factor, particularly distinguishing plants from "Ria de Alvor". Seasonal fluctuations were associated with environmental factors, including temperature, which, when excessively high, can impair plant metabolism, but also with the presence of flowers and seeds in spring and autumn samples, which also seems to contribute to elevated polyphenol levels and enhanced bioproperties of these samples. Additionally, genetic factors may be related to differences observed between ecotypes (geographical location). This study underscores sea lavender's potential as a natural source of antioxidant and anti-inflammatory agents, emphasizing the significance of considering both geographic location and seasonal dynamics in the assessment of phenolic composition and bioactive properties in medicinal plant species.


Asunto(s)
Lavandula , Plumbaginaceae , Antioxidantes , Estaciones del Año , Espectrometría de Masas en Tándem , Fitoquímicos , Polifenoles , Antiinflamatorios
5.
J Integr Plant Biol ; 66(4): 700-708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409933

RESUMEN

The high-affinity potassium transporters (HKTs), selectively permeable to either Na+ alone or Na+/K+, play pivotal roles in maintaining plant Na+/K+ homeostasis. Although their involvement in salt tolerance is widely reported, the molecular underpinnings of Oryza sativa HKTs remain elusive. In this study, we elucidate the structures of OsHKT1;1 and OsHKT2;1, representing two distinct classes of rice HKTs. The dimeric assembled OsHKTs can be structurally divided into four domains. At the dimer interface, a half-helix or a loop in the third domain is coordinated by the C-terminal region of the opposite subunit. Additionally, we present the structures of OsHKT1;5 salt-tolerant and salt-sensitive variants, a key quantitative trait locus associated with salt tolerance. The salt-tolerant variant of OsHKT1;5 exhibits enhanced Na+ transport capability and displays a more flexible conformation. These findings shed light on the molecular basis of rice HKTs and provide insights into their role in salt tolerance.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Tolerancia a la Sal/genética , Potasio/metabolismo , Proteínas de Transporte de Membrana , Sodio/metabolismo , Cationes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plants (Basel) ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256807

RESUMEN

Salt stress is a significant abiotic stress that reduces crop yield and quality globally. In this study, we utilized RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in response to salt stress induced by gamma-ray irradiation in a salt-tolerant soybean mutant. The total RNA library samples were obtained from the salt-sensitive soybean cultivar Kwangan and the salt-tolerant mutant KA-1285. Samples were taken at three time points (0, 24, and 72 h) from two tissues (leaves and roots) under 200 mM NaCl. A total of 967,719,358 clean reads were generated using the Illumina NovaSeq 6000 platform, and 94.48% of these reads were mapped to 56,044 gene models of the soybean reference genome (Glycine_max_Wm82.a2.v1). The DEGs with expression values were compared at each time point within each tissue between the two soybeans. As a result, 296 DEGs were identified in the leaves, while 170 DEGs were identified in the roots. In the case of the leaves, eight DEGs were related to the phenylpropanoid biosynthesis pathway; however, in the roots, Glyma.03G171700 within GmSalt3, a major QTL associated with salt tolerance in soybean plants, was differentially expressed. Overall, these differences may explain the mechanisms through which mutants exhibit enhanced tolerance to salt stress, and they may provide a basic understanding of salt tolerance in soybean plants.

8.
Microbiol Res ; 280: 127590, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142517

RESUMEN

The detrimental impact of soil salinization on crop productivity and agricultural economy has garnered significant attention. A rhizosphere bacterium with favorable salt tolerance and plant growth-promoting (PGP) functions was isolated in this work. The bacterium was identified as Enterobacter through 16 S rDNA sequencing analysis and designated as Enterobacter sp. JIV1. Interestingly, the presence of putrescine (Put), which had been shown to contribute in reducing abiotic stress damage to plants, significantly promoted strain JIV1 to generate 1-aminocyclopropane-1-carboxylic (ACC) deaminase, dissolve phosphorus and secrete indole-3-acetic acid (IAA). However, the synergy of plant growth promoting rhizobacteria (PGPR) and Put in improving plant salt resistance has not been extensively studied. In this study, strain JIV1 and exogenous Put effectively mitigated the inhibitory impact of salt stress simulated by 200 mM NaCl on rice (Oryza sativa L.) growth. The chlorophyll accumulation, photosynthetic efficiency and antioxidant capacity of rice were also significantly strengthened. Notably, the combined application of strain JIV1 and Put outperformed individual treatments. Moreover, the co-addition of strain JIV1 and Put increased soil protease and urease activities by 451.97% and 51.70% compared to that of salt treatment group. In general, Put-assisted PGPR JIV1 provides a new perspective on alleviating the salt-induced negative impacts on plants.


Asunto(s)
Enterobacter , Oryza , Suelo , Oryza/microbiología , Putrescina , Estrés Salino , Oxidación-Reducción
9.
PeerJ ; 12: e17043, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464747

RESUMEN

Background: Salinity is a major abiotic stress that prevents normal plant growth and development, ultimately reducing crop productivity. This study investigated the effects of salinity stress on two wheat lines: PL1 (wild type) and PL6 (mutant line generated through gamma irradiation of PL1). Results: The salinity treatment was carried out with a solution consisting of a total volume of 200 mL containing 150 mM NaCl. Salinity stress negatively impacted germination and plant growth in both lines, but PL6 exhibited higher tolerance. PL6 showed lower Na+ accumulation and higher K+ levels, indicating better ion homeostasis. Genome-wide transcriptomic analysis revealed distinct gene expression patterns between PL1 and PL6 under salt stress, resulting in notable phenotypic differences. Gene ontology analysis revealed positive correlations between salt stress and defense response, glutathione metabolism, peroxidase activity, and reactive oxygen species metabolic processes, highlighting the importance of antioxidant activities in salt tolerance. Additionally, hormone-related genes, transcription factors, and protein kinases showed differential expression, suggesting their roles in the differential salt stress response. Enrichment of pathways related to flavonoid biosynthesis and secondary metabolite biosynthesis in PL6 may contribute to its enhanced antioxidant activities. Furthermore, differentially expressed genes associated with the circadian clock system, cytoskeleton organization, and cell wall organization shed light on the plant's response to salt stress. Conclusions: Understanding these mechanisms is crucial for developing stress-tolerant crop varieties, improving agricultural practices, and breeding salt-resistant crops to enhance global food production and address food security challenges.


Asunto(s)
Salinidad , Triticum , Triticum/genética , Antioxidantes , Fitomejoramiento , Perfilación de la Expresión Génica , Tolerancia a la Sal/genética
10.
Ecol Evol ; 14(4): e11289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660469

RESUMEN

Ochlerotatus togoi is a salt-tolerant euryhaline mosquito that lays its eggs in rock pools. Although it is a pest that can transmit flaviviruses and filarial worms to humans, ecological studies have not been previously conducted because of its limited habitat. However, rising sea levels have created a more favorable environment for Oc. togoi, increasing the risk of Oc. togoi-borne diseases. We examined the oviposition and growth rates of Oc. togoi at 0-35 psu to obtain ecological data. It exhibited the highest oviposition preference at 0 psu; however, the hatching rate was highest at 10 psu, the pupation rate was highest at 25 psu, and the emergence rate was highest at 5 psu. Oc. togoi showed the highest rate of growth into adults at 25 psu. The results were assessed using Mann-Whitney U and Kruskal-Wallis H tests (post hoc test: Bonferroni), and a regression equation was generated for the incidence of adult Oc. togoi based on the change in salinity (y = -14.318 + 9.821x; y = adult incidence rate; x = salinity). The oviposition habits and developmental conditions of Oc. togoi were confirmed, and the incidence of Oc. togoi based on changes in sea level and ocean salinity was predicted. The results of this study will be useful for controlling salt-tolerant vectors and responding to vector-borne diseases.

11.
Int J Biol Macromol ; 264(Pt 2): 130731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471615

RESUMEN

Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.


Asunto(s)
Halobacteriaceae , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Bacterias , Biopolímeros
12.
Front Plant Sci ; 15: 1396754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799102

RESUMEN

Soil salinization poses a critical problem, adversely affecting plant development and sustainable agriculture. Plants can produce soil legacy effects through interactions with the soil environments. Salt tolerance of plants in saline soils is not only determined by their own stress tolerance but is also closely related to soil legacy effects. Creating positive soil legacy effects for crops, thereby alleviating crop salt stress, presents a new perspective for improving soil conditions and increasing productivity in saline farmlands. Firstly, the formation and role of soil legacy effects in natural ecosystems are summarized. Then, the processes by which plants and soil microbial assistance respond to salt stress are outlined, as well as the potential soil legacy effects they may produce. Using this as a foundation, proposed the application of salt tolerance mechanisms related to soil legacy effects in natural ecosystems to saline farmlands production. One aspect involves leveraging the soil legacy effects created by plants to cope with salt stress, including the direct use of halophytes and salt-tolerant crops and the design of cropping patterns with the specific crop functional groups. Another aspect focuses on the utilization of soil legacy effects created synergistically by soil microorganisms. This includes the inoculation of specific strains, functional microbiota, entire soil which legacy with beneficial microorganisms and tolerant substances, as well as the application of novel technologies such as direct use of rhizosphere secretions or microbial transmission mechanisms. These approaches capitalize on the characteristics of beneficial microorganisms to help crops against salinity. Consequently, we concluded that by the screening suitable salt-tolerant crops, the development rational cropping patterns, and the inoculation of safe functional soils, positive soil legacy effects could be created to enhance crop salt tolerance. It could also improve the practical significance of soil legacy effects in the application of saline farmlands.

13.
PeerJ ; 12: e17465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854802

RESUMEN

Salt stress is one of the significant abiotic stress factors that exert harmful effects on plant growth and yield. In this study, five cultivars of mung bean (Vigna radiata L.) were treated with different concentrations of NaCl and also inoculated with a salt-tolerant bacterial strain to assess their growth and yield. The bacterial strain was isolated from the saline soil of Sahiwal District, Punjab, Pakistan and identified as Bacillus pseudomycoides. Plant growth was monitored at 15-days interval and finally harvested after 120 days at seed set. Both sodium and potassium uptake in above and below-ground parts were assessed using a flame photometer. Fresh and dry mass, number of pods, seeds per plant, weight of seeds per plant and weight of 100 seeds reduced significantly as the concentration of NaCl increased from 3 to 15 dSm-1. There was a significant reduction in the growth and yield of plants exposed to NaCl stress without bacterial inoculum compared to the plants with bacterial inoculum. The latter plants showed a significant increase in the studied parameters. It was found that the cultivar Inqelab mung showed the least reduction in growth and yield traits among the studied cultivars, while Ramzan mung showed the maximum reduction. Among all the cultivars, maximum Na+ uptake occurred in roots, while the least uptake was observed in seeds. The study concludes that NaCl stress significantly reduces the growth and yield of mung bean cultivars, but Bacillus pseudomycoides inoculum alleviates salt stress. These findings will be helpful to cultivate the selected cultivars in soils with varying concentrations of NaCl.


Asunto(s)
Bacillus , Cloruro de Sodio , Vigna , Bacillus/efectos de los fármacos , Vigna/microbiología , Vigna/efectos de los fármacos , Vigna/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Estrés Salino , Potasio/metabolismo , Pakistán , Microbiología del Suelo , Sodio/metabolismo , Semillas/microbiología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Tolerancia a la Sal
14.
Nutrients ; 16(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612961

RESUMEN

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Asunto(s)
Gelatinasas , Metaloproteinasa 9 de la Matriz , Humanos , Adolescente , Metaloproteinasa 2 de la Matriz , Cloruro de Sodio , Cloruro de Sodio Dietético , HDL-Colesterol , Endopeptidasas
15.
Sci Rep ; 14(1): 14645, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918548

RESUMEN

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Asunto(s)
Productos Agrícolas , Tolerancia a la Sal , Triticum , Triticum/microbiología , Triticum/crecimiento & desarrollo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacillus/aislamiento & purificación , Bacillus/fisiología , Bacillus/metabolismo , Endófitos/fisiología , Salinidad , Ácidos Indolacéticos/metabolismo , Microbiología del Suelo , Fijación del Nitrógeno , Germinación , Bacillus cereus/fisiología , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/aislamiento & purificación , Plantones/microbiología , Plantones/crecimiento & desarrollo , Liasas de Carbono-Carbono/metabolismo
16.
Genes (Basel) ; 15(2)2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397210

RESUMEN

Utilizing salt-tolerant plants is a cost-effective strategy for agricultural production on salinized land. However, little is known about the mechanism of dandelion (Taraxacum mongolicum Hand.-Mazz.) in response to saline stress and caffeic acid biosynthesis. We investigated the morphological and physiological variations of two dandelions, namely, "BINPU2" (dandelion A) and "TANGHAI" (dandelion B) under gradient NaCl concentrations (0, 0.3%, 0.5%, 0.7%, and 0.9%), and analyzed potential mechanisms through a comparison analysis of transcriptomes in the two dandelions. Dandelion A had a high leaf weight; high ρ-coumaric acid, caffeic acid, ferulic acid, and caffeoyl shikimic acid contents; and high activities of POD and Pro. The maximum content of four kinds of phenolic acids mostly occurred in the 0.7% NaCl treatment. In this saline treatment, 2468 and 3238 differentially expressed genes (DEGs) in dandelion A and B were found, of which 1456 and 1369 DEGs in the two dandelions, respectively, showed up-regulation, indicating that more up-regulated DEGs in dandelion A may cause its high salt tolerance. Further, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that dandelion salt response and caffeic acid metabolism were mainly enriched in the phenylpropanoid biosynthesis pathway (ko00940) and response to ethylene (GO: 0009723). The caffeic acid biosynthesis pathway was reconstructed based on DEGs which were annotated to PAL, C4H, 4CL, HCT, C3'H, and CSE. Most of these genes showed a down-regulated mode, except for parts of DEGs of 4CL (TbA05G077650 and TbA07G073600), HCT (TbA03G009110, TbA03G009080, and novel.16880), and COMT (novel.13839). In addition, more up-regulated transcription factors (TFs) of ethylene TFs in dandelion A were found, but the TFs of ERF104, CEJ1, and ERF3 in the two dandelions under saline stress showed an opposite expression pattern. These up-regulated genes could enhance dandelion salt tolerance, and down-regulated DEGs in the caffeic acid biosynthesis pathway, especially CSE (TbA08G014310) and COMT (TbA04G07330), could be important candidate genes in the synthesis of caffeic acid under saline stress. The above findings revealed the potential mechanisms of salt response and caffeic acid metabolism in dandelion under saline stress, and provide references for salt-tolerant plant breeding and cultivation on saline-alkali land in the future.


Asunto(s)
Taraxacum , Taraxacum/genética , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Perfilación de la Expresión Génica , Etilenos
17.
Genes (Basel) ; 15(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540375

RESUMEN

Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely LOC_Os03g45410 (OsTBP2), LOC_Os07g42400 (OsGATA23), LOC_Os01g13030 (OsIAA3), LOC_Os05g34050 (OsbZIP39), LOC_Os09g29930 (OsBIM1), and LOC_Os10g10990 (transcription initiation factor IIF), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.


Asunto(s)
Oryza , Estrés Salino/genética , Factores de Transcripción/genética , Tolerancia a la Sal/genética , Perfilación de la Expresión Génica
18.
Bioresour Technol ; 406: 131006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889867

RESUMEN

To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 µm, D10 > 200 µm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.


Asunto(s)
Micelio , Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Aerobiosis , Aguas Residuales/microbiología , Aguas Residuales/química , Salinidad , Cladosporium , Reactores Biológicos
19.
Sci Rep ; 14(1): 3205, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332324

RESUMEN

Realising a fully circular bioeconomy requires the valorisation of lignocellulosic biomass. Cellulose is the most attractive component of lignocellulose but depolymerisation is inefficient, expensive and resource intensive requiring substantial volumes of potable water. Seawater is an attractive prospective replacement, however seawater tolerant enzymes are required for the development of seawater-based biorefineries. Here, we report a halophilic cellobiohydrolase SMECel6A, identified and isolated from a salt marsh meta-exo-proteome dataset with high sequence divergence to previously characterised cellobiohydrolases. SMECel6A contains a glycoside hydrolase family 6 (GH6) domain and a carbohydrate binding module family 2 (CBM2) domain. Characterisation of recombinant SMECel6A revealed SMECel6A to be active upon crystalline and amorphous cellulose. Mono- and oligosaccharide product profiles revealed cellobiose as the major hydrolysis product confirming SMECel6A as a cellobiohydrolase. We show SMECel6A to be halophilic with optimal activity achieved in 0.5X seawater displaying 80.6 ± 6.93% activity in 1 × seawater. Structural predictions revealed similarity to a characterised halophilic cellobiohydrolase despite sharing only 57% sequence identity. Sequential thermocycling revealed SMECel6A had the ability to partially reversibly denature exclusively in seawater retaining significant activity. Our study confirms that salt marsh ecosystems harbour enzymes with attractive traits with biotechnological potential for implementation in ionic solution based bioprocessing systems.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Glicósido Hidrolasas , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Humedales , Ecosistema , Estudios Prospectivos , Celulosa/metabolismo , Agua de Mar
20.
Bioresour Bioprocess ; 10(1): 82, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38647906

RESUMEN

Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda