Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Appl Toxicol ; 42(5): 778-792, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34668590

RESUMEN

Subclinical cardiotoxicity at low total cumulative doxorubicin (DOX) doses can manifest into cardiomyopathy in long-term cancer survivors. However, the underlying mechanisms are poorly understood. In male B6C3F1 mice, assessment of cardiac function by echocardiography was performed at 1, 4, 10, 17, and 24 weeks after exposure to 6, 9, 12, and 24 mg/kg total cumulative DOX doses or saline (SAL) to monitor development of delayed-onset cardiotoxicity. The 6- or 9-mg/kg total cumulative doses resulted in a significant time-dependent decline in systolic function (left ventricular ejection fraction (LVEF) and fractional shortening (FS)) during the 24-week recovery although there was not a significant alteration in % LVEF or % FS at any specific time point during the recovery. A significant decline in systolic function was elicited by the cardiotoxic cumulative DOX dose (24 mg/kg) during the 4- to 24-week period after treatment compared to SAL-treated counterparts. At 24 weeks after DOX treatment, a significant dose-related decrease in the expression of genes and proteins involved in sarcoplasmic reticulum (SR) calcium homeostasis (Ryr2 and Serca2) was associated with a dose-related increase in the transcript level of Casp12 (SR-specific apoptosis) in hearts. These mice also showed enhanced apoptotic activity in hearts indicated by a significant dose-related elevation in the number of apoptotic cardiomyocytes compared to SAL-treated counterparts. These findings collectively suggest that a steady decline in SR calcium handling and apoptosis might be involved in the development of subclinical cardiotoxicity that can evolve into irreversible cardiomyopathy later in life.


Asunto(s)
Cardiomiopatías , Cardiotoxicidad , Animales , Antibióticos Antineoplásicos/toxicidad , Calcio/metabolismo , Cardiomiopatías/inducido químicamente , Doxorrubicina/toxicidad , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
2.
Arch Physiol Biochem ; 129(5): 1058-1070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33689540

RESUMEN

We investigated how oxidative stress (OS) alters Ca2+ handling in ventricular myocytes in early metabolic syndrome (MetS) in sucrose-fed rats. The effects of N-acetyl cysteine (NAC) or dl-Dithiothreitol (DTT) on systolic Ca2+ transients (SCaTs), diastolic Ca2+ sparks (CaS) and Ca2+ waves (CaW), recorded by confocal techniques, and L-type Ca2+ current (ICa), assessed by whole-cell patch clamp, were evaluated in MetS and Control cells. MetS myocytes exhibited decreased SCaTs and CaS frequency but unaffected CaW propagation. In Control cells, NAC/DTT reduced RyR2/SERCA2a activity blunting SCaTs, CaS frequency and CaW propagation, suggesting that basal ROS optimised Ca2+ signalling by maintaining RyR2/SERCA2a function and that these proteins facilitate CaW propagation. Conversely, NAC/DTT in MetS recovered RyR2/SERCA2a function, improving SCaTs and CaS frequency, but unexpectedly decreasing CaW propagation. We hypothesised that OS decreases RyR2/SERCA2a activity at early MetS, and while decreased SERCA2a favours CaW propagation, diminished RyR2 restrains it.


Asunto(s)
Síndrome Metabólico , Canal Liberador de Calcio Receptor de Rianodina , Ratas , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Síndrome Metabólico/metabolismo , Miocitos Cardíacos , Estrés Oxidativo
3.
Cells ; 11(9)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563793

RESUMEN

Background: Sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) is impaired in various organs in animal models of diabetes. The purpose of this study was to test the effects of an allosteric SERCA2 activator (CDN1163) on glucose intolerance, hepatosteatosis, skeletal muscle function, and endothelial dysfunction in diabetic (db/db) mice. Methods: Either CDN1163 or vehicle was injected intraperitoneally into 16-week-old male control and db/db mice for 5 consecutive days. Results: SERCA2 protein expression was decreased in the aorta of db/db mice. In isometric tension measurements of aortic rings from db/db mice treated with CDN1163, acetylcholine (ACh)-induced relaxation was improved. In vivo intraperitoneal administrations of CDN 1163 also increased ACh-induced relaxation. Moreover, CDN1163 significantly decreased blood glucose in db/db mice at 60 and 120 min during a glucose tolerance test; it also decreased serum insulin levels, hepatosteatosis, and oxygen consumption in skeletal muscle during the early period of exercise in db/db mice. Conclusions: CDN1163 directly improved aortic endothelial dysfunction in db/db mice. Moreover, CDN1163 improved hepatosteatosis, skeletal muscle function, and insulin resistance in db/db mice. The activation of SERCA2 might be a strategy for the all the tissue expressed SERCA2a improvement of endothelial dysfunction and the target for the organs related to insulin resistance.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Enfermedades Vasculares , Animales , Diabetes Mellitus Experimental/metabolismo , Retículo Endoplásmico/metabolismo , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos , Enfermedades Vasculares/metabolismo
4.
Mol Immunol ; 84: 57-64, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27931779

RESUMEN

It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.


Asunto(s)
Cardiomiopatías/etiología , Complemento C5a/inmunología , Miocitos Cardíacos/inmunología , Receptor de Anafilatoxina C5a/inmunología , Sepsis/complicaciones , Animales , Humanos , Sepsis/inmunología
5.
Front Pharmacol ; 7: 500, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066247

RESUMEN

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) plays a central role in the pathogenesis of diabetes. This protein has been recognized as a potential target for diabetic therapy. In this study, we identified astragaloside IV (AS-IV) as a potent modulator of SERCA inhibiting renal injury in diabetic status. Increasing doses of AS-IV (2, 6, and 18 mg kg-1 day-1) were administered intragastrically to db/db mice for 8 weeks. Biochemical and histopathological approaches were conducted to evaluate the therapeutic effects of AS-IV. Cultured mouse podocytes were used to further explore the underlying mechanism in vitro. AS-IV dose-dependently increased SERCA activity and SERCA2 expression, and suppressed ER stress-mediated and mitochondria-mediated apoptosis in db/db mouse kidney. AS-IV also normalized glucose tolerance and insulin sensitivity, improved renal function, and ameliorated glomerulosclerosis and renal inflammation in db/db mice. In palmitate stimulated podocytes, AS-IV markedly improved inhibitions of SERCA activity and SERCA2 expression, restored intracellular Ca2+ homeostasis, and attenuated podocyte apoptosis in a dose-dependent manner with a concomitant abrogation of ER stress as evidenced by the downregulation of GRP78, cleaved ATF6, phospho-IRE1α and phospho-PERK, and the inactivation of both ER stress-mediated and mitochondria-mediated apoptotic pathways. Furthermore, SERCA2b knockdown eliminated the effect of AS-IV on ER stress and ER stress-mediated apoptotic pathway, whereas its overexpression exhibited an anti-apoptotic effect. Our data obtained from in vivo and in vitro studies demonstrate that AS-IV attenuates renal injury in diabetes subsequent to inhibiting ER stress-induced podocyte apoptosis through restoring SERCA activity and SERCA2 expression.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda