Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(30): 9296-9301, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037306

RESUMEN

The two-dimensional (2D) honeycomb lattice has attracted intensive research interest due to the appearance of Dirac-type band structures as the consequence of two sublattices in the honeycomb structure. Introducing strong spin-orbit coupling (SOC) leads to a gap opening at the Dirac point, transforming the honeycomb lattice into a 2D topological insulator as a platform for the quantum spin Hall effect (QSHE). In this work, we realize a 2D honeycomb-structured film with tellurium, the heaviest nonradioactive element in Group VI, namely, tellurene, via molecular beam epitaxy. We revealed the gap opening of 160 meV at the Dirac point due to the strong SOC in the honeycomb-structured tellurene by angle-resolved photoemission spectroscopy. The topological edge states of tellurene are detected via scanning tunneling microscopy/spectroscopy. These results demonstrate that tellurene is a novel 2D honeycomb lattice with strong SOC, and they unambiguously prove that tellurene is a promising candidate for a room-temperature QSHE system.

2.
Nano Lett ; 24(20): 6023-6030, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739284

RESUMEN

Construction of diatomic rotors, which is crucial for artificial nanomachines, remains challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom switches around a Cs atom at the Sb surface of the newly discovered kagome superconductor CsV3Sb5. The switching rate is controlled by the bias voltage between the rotor and scanning tunneling microscope (STM) tip. The spatial distribution of rates exhibits C2 symmetry, possibly linked to the symmetry-breaking charge orders of CsV3Sb5. We have expanded the rotor construction to include different transition metals (Cr, Fe, V) and alkali metals (Cs, K). Remarkably, designed configurations of rotors are achieved through STM manipulation. Rotor orbits and quantum states are precisely controlled by tuning the inter-rotor distance. Our findings establish a novel platform for the controlled fabrication of atomic motors on symmetry-breaking quantum materials, paving the way for advanced nanoscale devices.

3.
Nano Lett ; 24(26): 7962-7971, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885199

RESUMEN

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.

4.
Nano Lett ; 24(25): 7672-7680, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869481

RESUMEN

Kagome materials have recently garnered substantial attention due to the intrinsic flat band feature and the stimulated magnetic and spin-related many-body physics. In contrast to their bulk counterparts, two-dimensional (2D) kagome materials feature more distinct kagome bands, beneficial for exploring novel quantum phenomena. Herein, we report the direct synthesis of an ultrathin kagome-structured Co-telluride (Co9Te16) via a molecular beam epitaxy (MBE) route and clarify its formation mechanism from the Co-intercalation in the 1T-CoTe2 layers. More significantly, we unveil the flat band states in the ultrathin Co9Te16 and identify the real-space localization of the flat band states by in situ scanning tunneling microscopy/spectroscopy (STM/STS) combined with first-principles calculations. A ferrimagnetic order is also predicted in kagome-Co9Te16. This work should provide a novel route for the direct synthesis of ultrathin kagome materials via a metal self-intercalation route, which should shed light on the exploration of the intriguing flat band physics in the related systems.

5.
Nano Lett ; 24(27): 8445-8452, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917425

RESUMEN

The interfacial FeSe/TiO2-δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)-(√13 × âˆš13)-R33.7° surface. Our results disclosed the out-of-plane Se-Fe-Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × âˆš13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle-hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

6.
Small ; : e2401770, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764303

RESUMEN

Ultrathin PtSe2 ribbons can host spin-polarized edge states and distinct edge electrocatalytic activity, emerging as a promising candidate for versatile applications in various fields. However, the direct synthesis is still challenging and the growth mechanism is still unclear. Herein, the arrayed growth of ultrathin PtSe2 ribbons on bunched vicinal Au(001) facets, via a facile chemical vapor deposition (CVD) route is reported. The ultrathin PtSe2 flakes can transform from traditional irregular shapes to desired ribbon shapes by increasing the height of bunched and unidirectionally oriented Au steps (with step height hstep) is found. This crossover, occurring at hstep ≈ 3.0 nm, defines the tailored growth from step-flow to single-terrace-confined modes, as validated by density functional theory calculations of the different system energies. On the millimeter-scale single-crystal Au(001) films with aligned steps, the arrayed ultrathin PtSe2 ribbons with tunable width of ≈20-1000 nm, which are then served as prototype electrocatalysts for hydrogen evolution reaction (HER) is achieved. This work should represent a huge leap in the direct synthesis and the mechanism exploration of arrayed ultrathin transition-metal dichalcogenides (TMDCs) ribbons, which should stimulate further explorations of the edge-related physical properties and practical applications.

7.
Nano Lett ; 23(21): 9851-9857, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37871176

RESUMEN

Constructing two-dimensional (2D) artificial superlattices based on single-atom and few-atom nanoclusters is of great interest for exploring exotic physics. Here we report the realization of two types of artificial germanium (Ge) superlattice self-confined by a 37×37 R25.3° superstructure of bismuth (Bi) induced electronic kagome lattice potential valleys. Scanning tunneling microscopy measurements demonstrate that Ge atoms prefer to be confined in the center of the Bi electronic kagome lattice, forming a single-atom superlattice at 120 K. In contrast, room temperature grown Ge atoms and clusters are confined in the sharing triangle corner and the center, respectively, of the kagome lattice potential valleys, forming an artificial honeycomb superlattice. First-principle calculations and Mulliken population analysis corroborate that our reported atomically thin Bi superstructure on Au(111) has a kagome surface potential valley with the center of the inner Bi hexagon and the space between the outer Bi hexagons being energetically favorable for trapping Ge atoms.

8.
Nano Lett ; 23(7): 2630-2635, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37011340

RESUMEN

Two-dimensional (2D) h-BN and transition metal dichalcogenides (TMDs) are widely used as substrates of graphene because they are insulating, atomically flat, and without dangling bonds. Usually, it is believed that such insulating substrates will not affect the electronic properties of graphene, especially when the moiré pattern generated between them is quite small. Here, we present a systematic study of the electronic properties of graphene/TMD heterostructures with the period of the moiré pattern <1 nm, and our results reveal an unexpected sensitivity of electronic properties in graphene to the 2D insulating substrates. We demonstrate that there is a robust and long-ranged superperiodicity of electronic density in graphene, which arises from the scattering of electrons between the two valleys of graphene in the graphene/TMD heterostructures. By using scanning tunneling microscope and spectroscopy, three distinct atomic-scale patterns of the electronic density are directly imaged in every graphene/TMD heterostructure.

9.
Nano Lett ; 23(7): 2958-2963, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37011415

RESUMEN

Here we use low-temperature and variable-temperature scanning tunneling microscopy to study the pnictide superconductor, Ba1-xSrxNi2As2. In the low-temperature phase (triclinic phase) of BaNi2As2, we observe the unidirectional charge density wave (CDW) with Q = 1/3 on both the Ba and NiAs surfaces. On the NiAs surface of the triclinic BaNi2As2, there are structural-modulation-induced chain-like superstructures with distinct periodicities. In the high-temperature phase (tetragonal phase) of BaNi2As2, the NiAs surface appears as the periodic 1 × 2 superstructure. Interestingly, in the triclinic phase of Ba0.5Sr0.5Ni2As2, the unidirectional CDW is suppressed on both the Ba/Sr and NiAs surfaces, and the Sr substitution stabilizes the periodic 1 × 2 superstructure on the NiAs surface, which enhance the superconductivity in Ba0.5Sr0.5Ni2As2. Our results provide important microscopic insights for the interplay among the unidirectional CDW, structural modulation, and superconductivity in this class of pnictide superconductors.

10.
Nano Lett ; 23(6): 2397-2404, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912449

RESUMEN

Quantum materials, particularly Dirac materials with linearly dispersing bands, can be effectively tuned by strain-induced lattice distortions leading to a pseudomagnetic field that strongly modulates their electronic properties. Here, we grow kagome magnet FeSn films, consisting of alternatingly stacked Sn2 honeycomb (stanene) and Fe3Sn kagome layers, on SrTiO3(111) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we show that the Sn honeycomb layer can be periodically deformed by epitaxial strain for a film thickness below 10 nm, resulting in differential conductance peaks consistent with Landau levels generated by a pseudomagnetic field greater than 1000 T. Our findings demonstrate the feasibility of strain engineering the electronic properties of topological magnets at the nanoscale.

11.
Angew Chem Int Ed Engl ; : e202411893, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039830

RESUMEN

Triangulenes as neutral radicals are becoming promising candidates for future applications such as spintronics and quantum technologies. To extend the potential of the advanced materials, it is of importance to control their electronic and magnetic properties by multiple graphitic nitrogen doping. Here, we synthesize triaza[5]triangulene on Au(111) by cyclodehydrogenation, and its derivatives by cleaving C-N bonds. Bond-resolved scanning tunneling microscopy and scanning tunneling spectroscopy provided detailed structural information and evidence for open-shell singlet ground state. The antiferromagnetic arrangement of the spins in positively doped triaza[5]triangulene was further confirmed by density function theory calculations. The key aspect of triangulenes with multiple graphitic nitrogen is the extra pz electrons composing the π orbitals, favoring charge transfer to the substrate and changing their low-energy excitations. Our findings pave the way for the exploration of exotic low-dimensional quantum phases of matter in heteroatom doped organic systems.

12.
Angew Chem Int Ed Engl ; 63(18): e202401027, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38415373

RESUMEN

The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.

13.
Small ; 19(24): e2300413, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36922729

RESUMEN

Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.

14.
Nanotechnology ; 34(13)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36563353

RESUMEN

Since the advent of atomically flat graphene, two-dimensional (2D) layered materials have gained extensive interest due to their unique properties. The 2D layered materials prepared on epitaxial graphene/silicon carbide (EG/SiC) surface by molecular beam epitaxy (MBE) have high quality, which can be directly applied without further transfer to other substrates. Scanning tunneling microscopy and spectroscopy (STM/STS) with high spatial resolution and high-energy resolution are often used to study the morphologies and electronic structures of 2D layered materials. In this review, recent progress in the preparation of various 2D layered materials that are either monoelemental or transition metal dichalcogenides on EG/SiC surface by MBE and their STM/STS investigations are introduced.

15.
Nano Lett ; 21(14): 6253-6260, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34255523

RESUMEN

A two-dimensional topological insulator exhibits helical edge states topologically protected against single-particle backscattering. Such protection breaks down, however, when electron-electron interactions are significant or when edge reconstruction occurs, leading to a suppressed density of states (DOS) at the Fermi level that follows universal scaling with temperature and energy, characteristic of Tomonaga-Luttinger liquid (TLL). Here, we grow multilayer FeSe on SrTiO3 by molecular beam epitaxy and observe robust edge states at both the {100}Se and the {110}Se steps using scanning tunneling microscopy/spectroscopy. We determine the DOS follows a power law, resulting in the Luttinger parameter K of 0.26 ± 0.02 and 0.43 ± 0.07 for the {100}Se and {110}Se edges, respectively. The smaller K for the {100}Se edge also indicates strong correlations, attributed to ferromagnetic ordering likely present due to checkerboard antiferromagnetic fluctuations in FeSe. These results demonstrate TLL in FeSe helical edge channels, providing an exciting model system for novel topological excitations arising from superconductivity and interacting helical edge states.

16.
Nano Lett ; 20(8): 5922-5928, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32510964

RESUMEN

A molecular rotor based on N-heterocyclic carbenes (NHCs) has been rationally designed following theoretical predictions, experimentally realized, and characterized. Utilizing the structural tunability of NHCs, a computational screening protocol was first applied to identify NHCs with asymmetric rotational potentials on a surface as a prerequisite for unidirectional molecular rotors. Suitable candidates were then synthesized and studied using scanning tunneling microscopy/spectroscopy (STM/STS), analytical theoretical models, and molecular dynamics simulations. For our best NHC rotor featuring a mesityl N substituent on one side and a chiral naphthylethyl substituent on the other, unidirectional rotation is driven by inelastic tunneling of electrons from the NHC to the STM tip. While electrons preferentially tunnel through the mesityl N substituent, the chiral naphthylethyl substituent controls the directionality. Such NHC-based surface rotors open up new possibilities for the design and construction of functionalized molecular systems with high catalytic applicability and superior stability compared with other classes of molecular rotors.

17.
Nano Lett ; 20(3): 2056-2061, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32045257

RESUMEN

The electron pairing mechanism has always been one of the most challenging problems in high-temperature superconductors. Fe(Te,Se), as the superconductor with intrinsic topological property, may host Majorana bound states and has attracted tremendous interest. While in bulk Fe(Te,Se) the pairing mechanism has been experimentally investigated, it remains little understood in its two-dimensional limit counterpart. Here, by in situ scanning tunneling spectroscopy, we show clear evidence of the bosonic mode Ω beyond the superconducting gap Δ in monolayer FeTe0.5Se0.5/SrTiO3(001) high-temperature superconductor. Statistically, Ω shows an obvious anticorrelation with Δ and appears below 2Δ, consistent with the spin-excitation nature. Furthermore, the in-gap bound states induced by two types of magnetically different impurities support the sign-reversing pairing scenario. Our results not only suggest that the spin-excitation-like bosonic mode within a sign-reversing pairing plays an essential role in monolayer FeTe0.5Se0.5/SrTiO3(001) but also offer the crucial information for investigating the high-temperature superconductivity in interfacial iron selenides.

18.
Nano Lett ; 19(4): 2497-2502, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30916981

RESUMEN

The de Gennes extrapolation length is a direction dependent measure of the spatial evolution of the pairing gap near the boundary of a superconductor and thus provides a viable means to probe its symmetry. It is expected to be infinite and isotropic for plain s-wave pairing, and finite and anisotropic for d-wave. Here, we synthesize single-layer FeSe films on SrTiO3(001) (STO) substrates by molecular beam epitaxy and measure the de Gennes extrapolation length by scanning tunneling microscopy/spectroscopy. We find a 40% reduction of the superconducting gap near specular [110]Fe edges, yielding an extrapolation length of 8.0 nm. However, near specular [010]Fe edges, the extrapolation length is nearly infinite. These findings are consistent with a phase changing pairing with 2-fold symmetry, indicating d-wave superconductivity. This is further supported by the presence of in-gap states near the specular [110]Fe edges, but not the [010]Fe edges. This work provides direct experimental evidence for d-wave superconductivity in single-layer FeSe/STO and demonstrates quasiparticle scattering at boundaries to be a viable phase sensitive probe of pairing symmetry in Fe-based superconductors.

19.
Nano Lett ; 19(5): 3327-3335, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30995413

RESUMEN

Materials can exhibit exotic properties when they approach the two-dimensional (2D) limit. Because of promising applications in catalysis and energy storage, 2D transition-metal carbides (TMCs) have attracted considerable attention in recent years. Among these TMCs, ultrathin crystalline α-Mo2C flakes have been fabricated by chemical vapor deposition on Cu/Mo bilayer foils, and their 2D superconducting property was revealed by transport measurements. Herein, we studied the ultrathin α-Mo2C flakes by atomic-resolved scanning tunneling microscopy/spectroscopy (STM/S). Strain-related structural modulation and the coexistence of different layer-stacking modes are observed on the Mo-terminated surface of α-Mo2C flakes as well as various lattice defects. Furthermore, an enhanced superconductivity with shorter correlation length was observed by STS technique, and such superconductivity is very robust despite the appearance of the defects. A mechanism of superconducting enhancement is proposed based on the strain-induced strong coupling and the increased disordering originated from lattice defects. Our results provide a comprehensive understanding of the correlations between atomic structure, defects, and enhanced superconductivity of this emerging 2D material.

20.
Nano Lett ; 19(8): 5769-5773, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31276408

RESUMEN

We investigated the atomic scale electronic phase separation emerging from a quasi-1D charge-density-wave (CDW) state of the In atomic wire array on a Si(111) surface. Spatial variations of the CDW gap and amplitude are quantified for various interfaces of metallic and insulating CDW domains by scanning tunneling microscopy and spectroscopy (STS). The strong anisotropy in the metal-insulator junctions is revealed with an order of magnitude difference in the interwire and intrawire junction lengths of 0.4 and 7 nm, respectively. The intrawire junction length is reduced dramatically by an atomic scale impurity, indicating the tunability of the metal-insulator junction in an atomic scale. Density functional theory calculations disclose the dynamical nature of the intrawire junction formation and tunability.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda