Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Hum Genet ; 109(10): 1777-1788, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206742

RESUMEN

Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Adulto , Anciano de 80 o más Años , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Humanos , Herencia Multifactorial/genética , Penetrancia , Adulto Joven
2.
Plant J ; 116(2): 389-403, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37403589

RESUMEN

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Asunto(s)
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epidermis de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
BMC Plant Biol ; 24(1): 711, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060970

RESUMEN

BACKGROUND: The transition from vegetative to reproductive growth is a key factor in yield maximization. Sesame (Sesamum indicum), an indeterminate short-day oilseed crop, is rapidly being introduced into new cultivation areas. Thus, decoding its flowering mechanism is necessary to facilitate adaptation to environmental conditions. In the current study, we uncover the effect of day-length on flowering and yield components using F 2 populations segregating for previously identified quantitative trait loci (Si_DTF QTL) confirming these traits. RESULTS: Generally, day-length affected all phenotypic traits, with short-day preceding days to flowering and reducing yield components. Interestingly, the average days to flowering required for yield maximization was 50 to 55 days, regardless of day-length. In addition, we found that Si_DTF QTL is more associated with seed-yield and yield components than with days to flowering. A bulk-segregation analysis was applied to identify additional QTL differing in allele frequencies between early and late flowering under both day-length conditions. Candidate genes mining within the identified major QTL intervals revealed two flowering-related genes with different expression levels between the parental lines, indicating their contribution to sesame flowering regulation. CONCLUSIONS: Our findings demonstrate the essential role of flowering date on yield components and will serve as a basis for future sesame breeding.


Asunto(s)
Flores , Sitios de Carácter Cuantitativo , Sesamum , Sesamum/genética , Sesamum/crecimiento & desarrollo , Sesamum/fisiología , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Fenotipo , Fotoperiodo
4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396711

RESUMEN

Apple latent spherical virus (ALSV) is widely used as a virus-induced gene silencing (VIGS) vector for function genome study. However, the application of ALSV to soybeans is limited by the resistance of many varieties. In this study, the genetic locus linked to the resistance of a resistant soybean variety Heinong 84 was mapped by high-throughput sequencing-based bulk segregation analysis (HTS-BSA) using a hybrid population crossed from Heinong 84 and a susceptible variety, Zhonghuang 13. The results showed that the resistance of Heinong 84 to ALSV is controlled by two genetic loci located on chromosomes 2 and 11, respectively. Cleaved amplified polymorphic sequence (CAPS) markers were developed for identification and genotyping. Inheritance and biochemical analyses suggest that the resistance locus on chromosome 2 plays a dominant dose-dependent role, while the other locus contributes a secondary role in resisting ALSV. The resistance locus on chromosome 2 might encode a protein that can directly inhibit viral proliferation, while the secondary resistance locus on chromosome 11 may encode a host factor required for viral proliferation. Together, these data reveal novel insights on the resistance mechanism of Heinong 84 to ALSV, which will benefit the application of ALSV as a VIGS vector.


Asunto(s)
Glycine max , Secoviridae , Glycine max/genética , Vectores Genéticos , Enfermedades de las Plantas/genética
5.
Plant J ; 109(6): 1355-1374, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931728

RESUMEN

Bulk segregation analysis (BSA) utilizes a strategy of pooling individuals with extreme phenotypes to conduct economical and rapidly linked marker screening or quantitative trait locus (QTL) mapping. With the development of next-generation sequencing (NGS) technology in the past 10 years, BSA methods and technical systems have been gradually developed and improved. At the same time, the ever-decreasing costs of sequencing accelerate NGS-based BSA application in different species, including eukaryotic yeast, grain crops, economic crops, horticultural crops, trees, aquatic animals, and insects. This paper provides a landscape of BSA methods and reviews the BSA development process in the past decade, including the sequencing method for BSA, different populations, different mapping algorithms, associated region threshold determination, and factors affecting BSA mapping. Finally, we summarize related strategies in QTL fine mapping combining BSA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sitios de Carácter Cuantitativo , Mapeo Cromosómico/métodos , Productos Agrícolas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
6.
Annu Rev Genomics Hum Genet ; 21: 15-36, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-31935127

RESUMEN

I briefly describe my early life and how, through a series of serendipitous events, I became a genetic epidemiologist. I discuss how the Elston-Stewart algorithm was discovered and its contribution to segregation, linkage, and association analysis. New linkage findings and paternity testing resulted from having a genotyping lab. The different meanings of interaction-statistical and biological-are clarified. The computer package S.A.G.E. (Statistical Analysis for Genetic Epidemiology), based on extensive method development over two decades, was conceived in 1986, flourished for 20 years, and is now freely available for use and further development. Finally, I describe methods to estimate and test hypotheses about familial correlations, and point out that the liability model often used to estimate disease heritability estimates the heritability of that liability, rather than of the disease itself, and so can be highly dependent on the assumed distribution of that liability.


Asunto(s)
Algoritmos , Ligamiento Genético , Modelos Genéticos , Epidemiología Molecular , Historia del Siglo XX , Historia del Siglo XXI , Humanos
7.
BMC Plant Biol ; 23(1): 348, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403046

RESUMEN

Breeding rapeseed varieties with more main inflorescence siliques is an idea for developing rapeseed varieties that are suitable for light and simplified cultivation. The Brassica napus exhibited cluster bud of the main inflorescence (Bnclib) gene. At the fruiting stage, the main inflorescence had more siliques, higher density, and more main inflorescences. Moreover, the top of the main inflorescence bifurcated. Genetic analysis showed that the separation ratio between Bnclib and the wild type in the F2 generation was 3:1, which indicated that the trait was a single-gene-dominant inheritance. Among the 24 candidate genes, only one gene, BnaA03g53930D, showed differential expression between the groups (False discovery rate, FDR ≤ 0.05, |log2FC|≤ 1). qPCR verification of the BnaA03g53930D gene between Huyou 17 and its Bnclib near-isogenic line showed that BnaA03g53930D was significantly differentially expressed in the stem tissue of Huyou 17 and its Bnclib near-isogenic line (Bnclib NIL). The determination of gibberellin (GA), brassinolide (BR), cytokinin (CTK), jasmonic acid (JA), growth hormone (IAA), and strigolactone (SL) content in the shoot apex of Huyou 17 by Bnclib NIL and wild type showed that all six hormones significantly differed between the Bnclib NIL and Huyou 17. It is necessary to conduct further research on the interactions between JA and the other five hormones and the main inflorescence bud clustering in B. napus.


Asunto(s)
Brassica napus , Inflorescencia , Inflorescencia/genética , Brassica napus/metabolismo , Fitomejoramiento , Hormonas/metabolismo , Estudios de Asociación Genética
8.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298424

RESUMEN

Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors.


Asunto(s)
Hordeum , Hordeum/genética , Hordeum/metabolismo , Melaninas/metabolismo , Catecoles/metabolismo
9.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373312

RESUMEN

Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.


Asunto(s)
Brassica napus , Cadmio , Humanos , Brassica napus/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN
10.
Hered Cancer Clin Pract ; 20(1): 36, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182917

RESUMEN

OBJECTIVE: To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. METHODS: CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. RESULTS: In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. CONCLUSIONS: Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so.

11.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457037

RESUMEN

Mesocotyl length (MES) is an important trait that affects the emergence of maize seedlings after deep-seeding and is closely associated with abiotic stress. The elucidation of constitutive-QTLs (cQTLs) and candidate genes for MES and tightly molecular markers are thus of great importance in marker-assisted selection (MAS) breeding. Therefore, the objective of this study was to perform detailed genetic analysis of maize MES across 346 F2:3 families, 30/30 extreme bulks of an F2 population, and two parents by conventional QTL analysis, bulked-segregation analysis (BSA), and RNA-sequencing when maize was sown at the depths of 3, 15, and 20 cm, respectively. QTL analysis identified four major QTLs in Bin 1.09, Bin 3.04, Bin 4.06-4.07, and Bin 6.01 under two or more environments, which explained 2.89-13.97% of the phenotypic variance within a single environment. BSA results revealed the presence of seven significantly linked SNP/InDel regions on chromosomes 1 and 4, and six SNP/InDel regions and the major QTL of qMES4-1 overlapped and formed a cQTL, cQMES4, within the 160.98-176.22 Mb region. In total, 18,001 differentially expressed genes (DEGs) were identified across two parents by RNA-sequencing, and 24 of these genes were conserved core DEGs. Finally, we validated 15 candidate genes in cQMES4 to involve in cell wall structure, lignin biosyntheis, phytohormones (auxin, abscisic acid, brassinosteroid) signal transduction, circadian clock, and plant organ formation and development. Our findings provide a basis for MAS breeding and enhance our understanding of the deep-seeding tolerance of maize.


Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Mapeo Cromosómico/métodos , Humanos , Fenotipo , ARN , Análisis de Secuencia de ARN , Zea mays/genética
12.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36430897

RESUMEN

Heat smut is a fungal soil-borne disease caused by Sporisorium reilianum, and affects the development of male and female tassels. Our previous research found that the tassel symptoms in maize infected with Sporisorium reilianum significantly differed in inbred lines with Sipingtou blood, and exhibited stable heredity over time at multiple locations. In this study, cytological analysis demonstrated that the cellular organization structures of three typical inbred lines (Huangzao4, Jing7, and Chang7-2) showed significant discrepancies at the VT stage. QTLs that control the different symptoms of maize tassels infected with Sporisorium reilianum were located in two F2 populations, which were constructed using three typical inbred lines. The BSA (bulked segregation analysis) method was used to construct mixed gene pools based on typical tassel symptoms. The QTLs of different symptoms of maize tassels infected with Sporisorium reilianum were detected with 869 SSR markers covering the whole maize genome. The mixed gene pools were screened with polymorphic markers between the parents. Additional SSR markers were added near the above marker to detect genotypes in partially single plants in F2 populations. The QTL controlling tassel symptoms in the Huangzao4 and Jing7 lines was located on the bin 1.06 region, between the markers of umc1590 and bnlg1598, and explained 21.12% of the phenotypic variation with an additive effect of 0.6524. The QTL controlling the tassel symptoms of the Jing7 and Chang7-2 lines was located on the bin 2.07 region, between the markers of umc1042 and bnlg1335, and explained 11.26% phenotypic variation with an additive effect of 0.4355. Two candidate genes (ZmABP2 and Zm00001D006403) were identified by a conjoint analysis of label-free quantification proteome sequencings.


Asunto(s)
Basidiomycota , Zea mays , Zea mays/genética , Zea mays/microbiología , Inflorescencia/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
BMC Genomics ; 22(1): 567, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34294045

RESUMEN

BACKGROUND: Proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (NLR) make up one of most important resistance (R) families for plants to resist attacks from various pathogens and pests. The available transcriptomes of limber pine (Pinus flexilis) allow us to characterize NLR genes and related resistance gene analogs (RGAs) in host resistance against Cronartium ribicola, the causal fungal pathogen of white pine blister rust (WPBR) on five-needle pines throughout the world. We previously mapped a limber pine major gene locus (Cr4) that confers complete resistance to C. ribicola on the Pinus consensus linkage group 8 (LG-8). However, genetic distribution of NLR genes as well as their divergence between resistant and susceptible alleles are still unknown. RESULTS: To identify NLR genes at the Cr4 locus, the present study re-sequenced a total of 480 RGAs using targeted sequencing in a Cr4-segregated seed family. Following a call of single nucleotide polymorphisms (SNPs) and genetic mapping, a total of 541 SNPs from 155 genes were mapped across 12 LGs. Three putative NLR genes were newly mapped in the Cr4 region, including one that co-segregated with Cr4. The tight linkage of NLRs with Cr4-controlled phenotypes was further confirmed by bulked segregation analysis (BSA) using extreme-phenotype genome-wide association study (XP-GWAS) for significance test. Local tandem duplication in the Cr4 region was further supported by syntenic analysis using the sugar pine genome sequence. Significant gene divergences have been observed in the NLR family, revealing that diversifying selection pressures are relatively higher in local duplicated genes. Most genes showed similar expression patterns at low levels, but some were affected by genetic background related to disease resistance. Evidence from fine genetic dissection, evolutionary analysis, and expression profiling suggests that two NLR genes are the most promising candidates for Cr4 against WPBR. CONCLUSION: This study provides fundamental insights into genetic architecture of the Cr4 locus as well as a set of NLR variants for marker-assisted selection in limber pine breeding. Novel NLR genes were identified at the Cr4 locus and the Cr4 candidates will aid deployment of this R gene in combination with other major/minor genes in the limber pine breeding program.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pinus , Basidiomycota , Disección , Humanos , Pinus/genética , Fitomejoramiento , Enfermedades de las Plantas/genética
14.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361800

RESUMEN

Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Descubrimiento de Drogas/métodos , Mediciones Luminiscentes/métodos , Animales , Antiinfecciosos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Sensibilidad y Especificidad
15.
Fungal Genet Biol ; 136: 103319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884054

RESUMEN

The cell wall is a distinctive feature of filamentous fungi, providing them with structural integrity and protection from both biotic and abiotic factors. Unlike plant cell walls, fungi rely on structurally strong hydrophobic chitin core for mechanical strength together with alpha- and beta-glucans, galactomannans and glycoproteins. Cell wall stress conditions are known to alter the cell wall through the signaling cascade of the cell wall integrity (CWI) pathway and can result in increased cell wall chitin deposition. A previously isolated set of Aspergillus niger cell wall mutants was screened for increased cell wall chitin deposition. UV-mutant RD15.8#16 was found to contain approximately 60% more cell wall chitin than the wild type. In addition to the chitin phenotype, RD15.8#16 exhibits a compact colony morphology and increased sensitivity towards SDS. RD15.8#16 was subjected to classical genetic approach for identification of the underlying causative mutation, using co-segregation analysis and SNP genotyping. Genome sequencing of RD15.8#16 revealed eight SNPs in open reading frames (ORF) which were individually checked for co-segregation with the associated phenotypes, and showed the potential relevance of two genes located on chromosome IV. In situ re-creation of these ORF-located SNPs in a wild type background, using CRISPR/Cas9 genome editing, showed the importance Rab GTPase dissociation inhibitor A (gdiA) for the phenotypes of RD15.8#16. An alteration in the 5' donor splice site of gdiA reduced pre-mRNA splicing efficiency, causing aberrant cell wall assembly and increased chitin levels, whereas gene disruption attempts showed that a full gene deletion of gdiA is lethal.


Asunto(s)
Aspergillus niger/genética , Quitina/metabolismo , Proteínas Fúngicas/genética , Genes Esenciales , Inhibidores de Disociación de Guanina Nucleótido/genética , Aspergillus niger/metabolismo , Sistemas CRISPR-Cas , Pared Celular/metabolismo , Eliminación de Gen , Edición Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Empalme del ARN/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121523

RESUMEN

Brugada syndrome (BrS) is diagnosed by a coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG), and it is associated with an increased risk of sudden cardiac death (SCD) compared to the general population. Although BrS is considered a genetic disease, its molecular mechanism remains elusive in about 70-85% of clinically-confirmed cases. Variants occurring in at least 26 different genes have been previously considered causative, although the causative effect of all but the SCN5A gene has been recently challenged, due to the lack of systematic, evidence-based evaluations, such as a variant's frequency among the general population, family segregation analyses, and functional studies. Also, variants within a particular gene can be associated with an array of different phenotypes, even within the same family, preventing a clear genotype-phenotype correlation. Moreover, an emerging concept is that a single mutation may not be enough to cause the BrS phenotype, due to the increasing number of common variants now thought to be clinically relevant. Thus, not only the complete list of genes causative of the BrS phenotype remains to be determined, but also the interplay between rare and common multiple variants. This is particularly true for some common polymorphisms whose roles have been recently re-evaluated by outstanding works, including considering for the first time ever a polygenic risk score derived from the heterozygous state for both common and rare variants. The more common a certain variant is, the less impact this variant might have on heart function. We are aware that further studies are warranted to validate a polygenic risk score, because there is no mutated gene that connects all, or even a majority, of BrS cases. For the same reason, it is currently impossible to create animal and cell line genetic models that represent all BrS cases, which would enable the expansion of studies of this syndrome. Thus, the best model at this point is the human patient population. Further studies should first aim to uncover genetic variants within individuals, as well as to collect family segregation data to identify potential genetic causes of BrS.


Asunto(s)
Síndrome de Brugada/genética , Herencia Multifactorial/genética , Animales , Humanos , Canales Iónicos/genética , Mutación/genética , Sarcómeros/metabolismo
17.
Int J Legal Med ; 133(6): 1733-1742, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31455979

RESUMEN

Sudden arrhythmic death syndrome (SADS) in young individuals is a devastating and tragic event often caused by an undiagnosed inherited cardiac disease. Although post-mortem genetic testing represents a promising tool to elucidate potential disease-causing mechanisms in such autopsy-negative death cases, a variant interpretation is still challenging, and functional consequences of identified sequence alterations often remain unclear. Recently, we have identified a novel heterozygous missense variant (N1774H) in the Nav1.5 channel-encoding gene SCN5A in a 19-year-old female SADS victim. The aim of this study was to perform a co-segregation analysis in family members of the index case and to evaluate the functional consequences of this SCN5A variant. Functional characterization of the SCN5A N1774H variant was performed using patch-clamp techniques in TsA-201 cell line transiently expressing either wild-type or variant Nav1.5 channels. Electrophysiological analyses revealed that variant Nav1.5 channels show a loss-of-function in the peak current densities, but an increased late current compared to the wild-type channels, which could lead to both, loss- and gain-of-function respectively. Furthermore, clinical assessment and genetic testing of the relatives of the index case showed that all N1774H mutation carriers have prolonged QT intervals. The identification of several genotype and phenotype positive family members and the functional implication of the SCN5A N1774H variant support the evidence of the in silico predicted pathogenicity of the here reported sequence alteration.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Linaje , Femenino , Genotipo , Heterocigoto , Humanos , Lactante , Masculino , Fenotipo , Secuenciación del Exoma , Adulto Joven
18.
Hereditas ; 155: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083084

RESUMEN

BACKGROUND: Red-skinned pears are attractive to consumers because of their aesthetic appeal and the antioxidant-associated health benefits provided by the anthocyanins in their red skin. In China, the 'Red Zaosu' (RZS) red bud mutation of the Zaosu (ZS) pear has been used as a parent in Asian pear breeding to generate new cultivars with crispy red fruit and red tender shoots resembling those of the 'Max Red Bartlett' (MRB) pears. RESULTS: In this study, a segregation ratio of 1:1 was observed between plants with red or green shoots in four families with RZS as the only red shoot gene donor parent, suggesting that the red shoot trait of RZS is associated with a dominant gene. Three markers, In1400-1, In1579-1 and In1579-3, were chosen from 22 pairs of indel primers targeting regions in the vicinity of the previously identified red fruit skin locus of MRB and were able to effectively distinguish the eight red shoot plants from the eight green shoot plants. Linkage analysis indicated that the genetic distance between the two marker loci (In1579-1 and In1579-3) and the red shoot locus of RZS were both 1.4 cM, while the genetic distance between the In1400-1 marker and the red shoot locus was 2.1 cM. The physical position of the red locus in RZS should be in the 368.6 kb candidate interval at the bottom of LG4. CONCLUSIONS: The genetic locus responsible for the red tender shoots of RZS was located in the same interval of the red fruit skin gene of MRB, meaning that the bud mutation loci of RZS and MRB may be the same or adjacent to each other, and the red shoot trait and the red fruit skin trait in RZS may be controlled by the same, or a closely linked locus. As a result, breeders could use red shoots as a morphological marker to select for the red-skinned hybrids from RZS families.


Asunto(s)
Frutas/genética , Genes Dominantes , Pigmentación/genética , Hojas de la Planta/genética , Pyrus/genética , Cruzamientos Genéticos , Genes de Plantas , Ligamiento Genético , Fenotipo , Fitomejoramiento
19.
Hum Mutat ; 38(3): 243-251, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995669

RESUMEN

To interpret genetic variants discovered from next-generation sequencing, integration of heterogeneous information is vital for success. This article describes a framework named PERCH (Polymorphism Evaluation, Ranking, and Classification for a Heritable trait), available at http://BJFengLab.org/. It can prioritize disease genes by quantitatively unifying a new deleteriousness measure called BayesDel, an improved assessment of the biological relevance of genes to the disease, a modified linkage analysis, a novel rare-variant association test, and a converted variant call quality score. It supports data that contain various combinations of extended pedigrees, trios, and case-controls, and allows for a reduced penetrance, an elevated phenocopy rate, liability classes, and covariates. BayesDel is more accurate than PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, PhyloP, GERP++, SiPhy, CADD, MetaLR, and MetaSVM. The overall approach is faster and more powerful than the existing quantitative method pVAAST, as shown by the simulations of challenging situations in finding the missing heritability of a complex disease. This framework can also classify variants of unknown significance (variants of uncertain significance) by quantitatively integrating allele frequencies, deleteriousness, association, and co-segregation. PERCH is a versatile tool for gene prioritization in gene discovery research and variant classification in clinical genetic testing.


Asunto(s)
Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Programas Informáticos , Humanos , Curva ROC , Reproducibilidad de los Resultados
20.
Am J Respir Crit Care Med ; 193(12): 1353-63, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26736064

RESUMEN

RATIONALE: Genomic regions identified by genome-wide association studies explain only a small fraction of heritability for chronic obstructive pulmonary disease (COPD). Alpha-1 antitrypsin deficiency shows that rare coding variants of large effect also influence COPD susceptibility. We hypothesized that exome sequencing in families identified through a proband with severe, early-onset COPD would identify additional rare genetic determinants of large effect. OBJECTIVES: To identify rare genetic determinants of severe COPD. METHODS: We applied filtering approaches to identify potential causal variants for COPD in whole exomes from 347 subjects in 49 extended pedigrees from the Boston Early-Onset COPD Study. We assessed the power of this approach under different levels of genetic heterogeneity using simulations. We tested genes identified in these families using gene-based association tests in exomes of 204 cases with severe COPD and 195 resistant smokers from the COPDGene study. In addition, we examined previously described loci associated with COPD using these datasets. MEASUREMENTS AND MAIN RESULTS: We identified 69 genes with predicted deleterious nonsynonymous, stop, or splice variants that segregated with severe COPD in at least two pedigrees. Four genes (DNAH8, ALCAM, RARS, and GBF1) also demonstrated an increase in rare nonsynonymous, stop, and/or splice mutations in cases compared with resistant smokers from the COPDGene study; however, these results were not statistically significant. We demonstrate the limitations of the power of this approach under genetic heterogeneity through simulation. CONCLUSIONS: Rare deleterious coding variants may increase risk for COPD, but multiple genes likely contribute to COPD susceptibility.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad Pulmonar Obstructiva Crónica/genética , Deficiencia de alfa 1-Antitripsina/genética , Adulto , Boston , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda