Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 186(7): 1417-1431.e20, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001502

RESUMEN

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.


Asunto(s)
Antineoplásicos , Infecciones por Citomegalovirus , Humanos , Anciano , Citomegalovirus , Linfocitos T Citotóxicos , Antígenos HLA , Linfocitos T CD4-Positivos , Senescencia Celular
2.
Semin Cancer Biol ; 101: 58-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810814

RESUMEN

Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.


Asunto(s)
Senescencia Celular , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Senescencia Celular/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fenotipo Secretor Asociado a la Senescencia , Senoterapéuticos/farmacología
3.
Mol Ther ; 32(9): 2992-3011, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582962

RESUMEN

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.


Asunto(s)
Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Modelos Animales de Enfermedad , Hepatocitos , Regeneración Hepática , Animales , Ratones , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Hidrolasas/genética , Hidrolasas/metabolismo , Ratones Transgénicos , Ratones Noqueados
4.
Biogerontology ; 25(1): 161-175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37736858

RESUMEN

Accumulation of senescent fibroblasts, chronic inflammation, and collagen remodeling due to aging-related secretory phenotypes have been hypothesized to cause age-related skin aging, which results in wrinkles and loss of skin elasticity, thus compromising appearance attractiveness. However, the rejuvenating effects of removing senescent cells from the human skin and the efficacy of related therapeutic agents remain unclear. Here, we investigated the effects of fisetin, a potential anti-aging component found in various edible fruits and vegetables, on senescent human dermal fibroblasts (HDFs) and aging human skin. Senescence was induced in primary HDFs using long-term passaging and treatment with ionizing radiation, and cell viability was assessed after treatment with fisetin and a control component. A mouse/human chimeric model was established by subcutaneously transplanting whole skin grafts from aged individuals into nude mice, which were treated intraperitoneally with fisetin or control a component for 30 d. Skin samples were obtained and subjected to senescence-associated-beta-galactosidase staining; the extent of aging was evaluated using western blotting, reverse transcription-quantitative PCR, and histological analysis. Fisetin selectively eliminated senescent dermal fibroblasts in both senescence-induced cellular models; this effect is attributable to cell death induction by caspases 3, 8, and 9-mediated endogenous and exogenous apoptosis. Fisetin-treated senescent human skin grafts showed increased collagen density and decreased senescence-associated secretory phenotypes (SASP), including matrix metalloproteinases and interleukins. No apparent adverse events were observed. Thus, fisetin could improve skin aging through selective removal of senescent dermal fibroblasts and SASP inhibition, indicating its potential as an effective novel therapeutic agent for combating skin aging.


Asunto(s)
Senescencia Celular , Flavonoles , Rejuvenecimiento , Animales , Ratones , Humanos , Anciano , Senescencia Celular/fisiología , Ratones Desnudos , Fibroblastos , Colágeno/metabolismo , Colágeno/farmacología , Dermis/metabolismo
5.
Semin Cancer Biol ; 86(Pt 3): 769-781, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34799201

RESUMEN

The tumor microenvironment (TME) is a major contributor to cancer malignancy including development of therapeutic resistance, a process mediated in part through intercellular crosstalk. Besides diverse soluble factors responsible for pro-survival pathway activation, immune evasion and extracellular matrix (ECM) remodeling further promote cancer resistance. Importantly, therapy-induced senescence (TIS) of cells in the TME is frequently observed in anticancer regimens, an off-target effect that can generate profound impacts on disease progression. By conferring the resistance and fueling the repopulation of remaining cancerous cells, TIS is responsible for tumor relapse and distant metastasis in posttreatment stage. This pathological trajectory can be substantially driven by the pro-inflammatory feature of senescent cells, termed as the senescence-associated secretory phenotype (SASP). Targeting strategies to selectively and efficiently remove senescent cells before they exert non-autonomous but largely deleterious effects, are emerging as an effective solution to prevent drug resistance acquired from a treatment-remodeled TME. In this review, we summarize the TME composition and key activities that affect tissue homeostasis and support treatment resistance. Promising opportunities that allow TME-manipulation and senescent cell-targeting (senotherapy) are discussed, with translational pipelines to overcome therapeutic barriers in clinical oncology projected.


Asunto(s)
Resistencia a Antineoplásicos , Microambiente Tumoral , Humanos , Resistencia a Antineoplásicos/genética , Recurrencia Local de Neoplasia , Senescencia Celular , Movimiento Celular
6.
Angew Chem Int Ed Engl ; 62(33): e202304465, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37338457

RESUMEN

Senescent cells are the critical drivers of atherosclerosis formation and maturation. Mitigating senescent cells holds promise for the treatment of atherosclerosis. In an atherosclerotic plaque microenvironment, senescent cells interact with reactive oxygen species (ROS), promoting the disease development. Here, we hypothesize that a cascade nanozyme with antisenescence and antioxidant activities can serve as an effective therapeutic for atherosclerosis. An integrated cascade nanozyme with superoxide dismutase- and glutathione peroxidase-like activities, named MSe1 , is developed in this work. The obtained cascade nanozyme can attenuate human umbilical vein endothelial cell (HUVEC) senescence by protecting DNA from damage. It significantly weakens inflammation in macrophages and HUVECs by eliminating overproduced intracellular ROS. Additionally, the MSe1 nanozyme effectively inhibits foam cell formation in macrophages and HUVECs by decreasing the internalization of oxidized low-density lipoprotein. After intravenous administration, the MSe1 nanozyme significantly inhibits the formation of atherosclerosis in apolipoprotein E-deficient (ApoE-/- ) mice by reducing oxidative stress and inflammation and then decreases the infiltration of inflammatory cells and senescent cells in atherosclerotic plaques. This study not only provides a cascade nanozyme but also suggests that the combination of antisenescence and antioxidative stress holds considerable promise for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno , Aterosclerosis/tratamiento farmacológico , Macrófagos , Células Endoteliales de la Vena Umbilical Humana , Inflamación
7.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638556

RESUMEN

Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.


Asunto(s)
Antígenos CD1/metabolismo , Antígeno CD47/metabolismo , Senescencia Celular/fisiología , Fibroblastos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Pulmón/metabolismo , Animales , Calbindina 2/metabolismo , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fibroblastos/citología , Peróxido de Hidrógeno/toxicidad , Ratones , Cultivo Primario de Células
8.
J Intern Med ; 288(5): 518-536, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32686219

RESUMEN

Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.


Asunto(s)
Betacoronavirus , Senescencia Celular/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Desarrollo de Medicamentos , Descubrimiento de Drogas , Neumonía Viral/tratamiento farmacológico , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/patología , Humanos , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/patología , SARS-CoV-2 , Investigación Biomédica Traslacional , Tratamiento Farmacológico de COVID-19
9.
Inflamm Res ; 69(9): 825-839, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32529477

RESUMEN

PURPOSE: Novel Coronavirus disease 2019 (COVID-19), is an acute respiratory distress syndrome (ARDS), which is emerged in Wuhan, and recently become worldwide pandemic. Strangely, ample evidences have been shown that the severity of COVID-19 infections varies widely from children (asymptomatic), adults (mild infection), as well as elderly adults (deadly critical). It has proven that COVID-19 infection in some elderly critical adults leads to a cytokine storm, which is characterized by severe systemic elevation of several pro-inflammatory cytokines. Then, a cytokine storm can induce edematous, ARDS, pneumonia, as well as multiple organ failure in aged patients. It is far from clear till now why cytokine storm induces in only COVID-19 elderly patients, and not in young patients. However, it seems that aging is associated with mild elevated levels of local and systemic pro-inflammatory cytokines, which is characterized by "inflamm-aging". It is highly likely that "inflamm-aging" is correlated to increased risk of a cytokine storm in some critical elderly patients with COVID-19 infection. METHODS: A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, as well as Google Scholar pre-print database using all available MeSH terms for COVID-19, Coronavirus, SARS-CoV-2, senescent cell, cytokine storm, inflame-aging, ACE2 receptor, autophagy, and Vitamin D. Electronic database searches combined and duplicates were removed. RESULTS: The aim of the present review was to summarize experimental data and clinical observations that linked the pathophysiology mechanisms of "inflamm-aging", mild-grade inflammation, and cytokine storm in some elderly adults with severe COVID-19 infection.


Asunto(s)
Envejecimiento , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/fisiopatología , Síndrome de Liberación de Citoquinas/virología , Inflamación/inmunología , Neumonía Viral/inmunología , Neumonía Viral/fisiopatología , Adipocitos/citología , Factores de Edad , Anciano , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Autofagia , Betacoronavirus , COVID-19 , Senescencia Celular , Citocinas/inmunología , Humanos , Sistema Inmunológico , Inflamación/fisiopatología , Pandemias , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , SARS-CoV-2 , Vitamina D/metabolismo , Deficiencia de Vitamina D
10.
Cancer Sci ; 109(6): 1753-1763, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29675979

RESUMEN

Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1+ T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention.


Asunto(s)
Antígeno B7-H1/inmunología , Neoplasias de la Mama/inmunología , Vacunas contra el Cáncer/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Senescencia Celular/genética , Senescencia Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Humanos , Masculino , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/prevención & control , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Resultado del Tratamiento , Vacunación
12.
Bioorg Med Chem ; 26(14): 3925-3938, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925484

RESUMEN

Selective clearance of senescent cells (SCs) has emerged as a potential therapeutic approach for age-related diseases, as well as chemotherapy- and radiotherapy-induced adverse effects. Through a cell-based phenotypic screening approach, we recently identified piperlongumine (PL), a dietary natural product, as a novel senolytic agent, referring to small molecules that can selectively kill SCs over normal or non-senescent cells. In an effort to establish the structure-senolytic activity relationships of PL analogues, we performed a series of structural modifications on the trimethoxyphenyl and the α,ß-unsaturated δ-valerolactam rings of PL. We show that modifications on the trimethoxyphenyl ring are well tolerated, while the Michael acceptor on the lactam ring is critical for the senolytic activity. Replacing the endocyclic C2-C3 olefin with an exocyclic methylene at C2 render PL analogues 47-49 with increased senolytic activity. These α-methylene containing analogues are also more potent than PL in inducing ROS production in WI-38 SCs. Similar to PL, 47-49 reduce the protein levels of oxidation resistance 1 (OXR1), an important oxidative stress response protein that regulates the expression of a variety of antioxidant enzymes, in cells. This study represents a useful starting point toward the discovery of senolytic agents for therapeutic uses.


Asunto(s)
Apoptosis/efectos de los fármacos , Dioxolanos/farmacología , Senescencia Celular/efectos de los fármacos , Dioxolanos/síntesis química , Dioxolanos/química , Relación Dosis-Respuesta a Droga , Humanos , Rayos Infrarrojos , Proteínas Mitocondriales , Estructura Molecular , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
13.
Adv Healthc Mater ; 13(10): e2303476, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38161211

RESUMEN

Chirality is common in nature, which determines the high enantioselectivity of living systems. Selecting suitable chiral configurations is of great meaning for nanostructures to function better in biological systems. In this study, chiral Co3O4-H2TPPS-Au (CoHAu) nanoassemblies are constructed to accelerate the production ∙OH by consuming D-glucose (D-Glu, widely spread in nature) based on their outstanding enantioselective cascade-catalytic abilities. In particular, D-CoHAu nanoassemblies are more effective in the catalytic conversion of D-Glu than L-CoHAu nanoassemblies. This phenomenon is due to the stronger binding affinity of D-CoHAu nanoassemblies indicated by the lower Km value. Moreover, D-CoHAu nanoassemblies display excellent consumption-ability of D-Glu and production of ∙OH in living cells, which can eliminate senescent cells effectively based on their intracellular enantioselective cascade-catalysis. This research establishes the foundation for bio-mimicking nanostructures with unique functionalities to regulate abnormal biological activities better.


Asunto(s)
Nanoestructuras , Estereoisomerismo , Catálisis , Nanoestructuras/química , Senescencia Celular
14.
Front Neurosci ; 17: 1227705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575310

RESUMEN

Introduction: Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods: In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1ß and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion: Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.

15.
Aging Cell ; 22(5): e13806, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967480

RESUMEN

Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-ß and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet ß cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.


Asunto(s)
Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Ratones , Animales , Senescencia Celular/genética , Envejecimiento , Inflamación , Inmunoterapia , Fenotipo
16.
Cell Biosci ; 12(1): 74, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642067

RESUMEN

BACKGROUND: The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY: In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION: This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.

17.
Biomed Pharmacother ; 150: 113034, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489284

RESUMEN

Photoaging mainly occurs due to ultraviolet (UV) radiation, and is accompanied by increased secretion of matrix metalloproteinases (MMPs) and degradation of collagen. UV radiation induces cell senescence in the skin; however, the role of senescent cells in photoaging remains unclear. Therefore, to elucidate the role of senescent cells in photoaging, we evaluated the effect of senolytics in a photoaging mouse model and investigated the underlying mechanism of their antiaging effect. Both UV-induced senescent human dermal fibroblasts and a photoaging mouse model, ABT-263 and ABT-737, demonstrated senolytic effects on senescent fibroblasts. Moreover, we found that several senescence-associated secretory phenotype factors, such as IL-6, CCL5, CCL7, CXCL12, and SCF, induced MMP-1 expression in dermal fibroblasts, which decreased after treatment with ABT-263 and ABT-737 in vivo and in vitro. Both senolytic drugs attenuated the induction of MMPs and decreased collagen density in the photoaging mouse model. Our data suggest that senolytic agents reduce UV-induced photoaging, making strategies for targeting senescent dermal fibroblasts promising options for the treatment of photoaging.


Asunto(s)
Envejecimiento de la Piel , Enfermedades de la Piel , Animales , Células Cultivadas , Colágeno/metabolismo , Fibroblastos , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Senoterapéuticos , Piel , Enfermedades de la Piel/metabolismo , Rayos Ultravioleta
18.
Aging (Albany NY) ; 14(13): 5366-5375, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776529

RESUMEN

OBJECTIVE: Osteoarthritis is closely related to aging. Tribbles homologue 3 (TRB3) is found to display age-related expression and contributes to the regulation of cell proliferation, differentiation and fibrosis. In this study, we aimed to investigate the potential involvement of TRB3 in cartilage autophagy and aging in osteoarthritis. METHODS: Cartilage tissue samples were collected from osteoarthritis patients who received joint replacement and cadaveric donors. In osteoarthritis cartilage tissue, we analyzed autophagy- and senescence-associated proteins using immunohistochemistry and western blot (WB), in vitro, to confirm the role played by TRB3 in the process of autophagy, cell senescence, and inflammation, small interfering RNA (siRNA) was used for TRB3 knockdown in cells. RESULTS: We found increased level of p62, decreased level of microtubule-associated protein 1A/1B-light chain 3 (LC3) and beclin-1 in cartilage, and increased level of p16 and p21 in tissue samples collected from osteoarthritis patients, indicating decreased autophagy and increased cell senescence. TRB3 knockdown significantly rescued, in vitro, the reduced autophagy and elevated cell senescence in human chondrocyte. CONCLUSIONS: Interfering with TRB3 expression in cartilage may serve as a target in the prevention and treatment of age-related osteoarthritis.


Asunto(s)
Cartílago Articular , Osteoartritis , Autofagia/genética , Cartílago Articular/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Interferente Pequeño/metabolismo
19.
Geroscience ; 44(4): 1941-1960, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35247131

RESUMEN

Obesity is a major risk factor for type 2 diabetes and a trigger of chronic and systemic inflammation. Recent evidence suggests that an increased burden of senescent cells (SCs) in the adipose tissue of obese/diabetic animal models might underlie such pro-inflammatory phenotype. However, the role of macrophages as candidate SCs, their phenotype, the distribution of SCs among fat depots, and clinical relevance are debated. The senescence marker ß-galactosidase and the macrophage marker CD68 were scored in visceral (vWAT) and subcutaneous (scWAT) adipose tissue from obese patients (n=17) undergoing bariatric surgery and control patients (n=4) subjected to cholecystectomy. A correlation was made between the number of SCs and BMI, serum insulin, and the insulin resistance (IR) index HOMA. The monocyte cell line (THP-1) was cultured in vitro in high glucose milieu (60 mM D-glucose) and subsequently co-cultured with human adipocytes (hMADS) to investigate the reciprocal inflammatory activation. In obese patients, a significantly higher number of SCs was observed in vWAT compared to scWAT; about 70% of these cells expressed the macrophage marker CD68; and the number of SCs in vWAT, but not in scWAT, positively correlated with BMI, HOMA-IR, and insulin. THP-1 cultured in vitro in high glucose milieu acquired a senescent-like phenotype (HgSMs), characterized by a polarization toward a mixed M1/M2-like secretory phenotype. Co-culturing HgSMs with hMADS elicited pro-inflammatory cytokine expression in both cell types, and defective insulin signaling in hMADS. In morbid obesity, expansion of visceral adipose depots involves an increased burden of macrophages with senescent-like phenotype that may promote a pro-inflammatory profile and impair insulin signaling in adipocytes, supporting a framework where senescent macrophages fuel obesity-induced systemic inflammation and possibly contribute to the development of IR.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Humanos , Tejido Adiposo , Macrófagos/metabolismo , Resistencia a la Insulina/fisiología , Inflamación/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Biomarcadores/metabolismo , Obesidad/complicaciones
20.
Front Cell Dev Biol ; 10: 822816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252191

RESUMEN

Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda