Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Annu Rev Biochem ; 92: 15-41, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37137166

RESUMEN

SMC (structural maintenance of chromosomes) protein complexes are an evolutionarily conserved family of motor proteins that hold sister chromatids together and fold genomes throughout the cell cycle by DNA loop extrusion. These complexes play a key role in a variety of functions in the packaging and regulation of chromosomes, and they have been intensely studied in recent years. Despite their importance, the detailed molecular mechanism for DNA loop extrusion by SMC complexes remains unresolved. Here, we describe the roles of SMCs in chromosome biology and particularly review in vitro single-molecule studies that have recently advanced our understanding of SMC proteins. We describe the mechanistic biophysical aspects of loop extrusion that govern genome organization and its consequences.


Asunto(s)
Proteínas Cromosómicas no Histona , Complejos Multiproteicos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Complejos Multiproteicos/química , Cromosomas/genética , Cromosomas/metabolismo , ADN/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(40): e2122770119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161928

RESUMEN

Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.


Asunto(s)
Rhodobacter sphaeroides , Uridina Difosfato Glucosa , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Glucosa/metabolismo , Rhodobacter sphaeroides/metabolismo , Uridina Difosfato Glucosa/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(11): e2116218119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259021

RESUMEN

SignificanceWe directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Reparación del ADN , ADN/química , ADN/genética , Imagen Individual de Molécula , ADN/metabolismo , ADN de Cadena Simple , Humanos , Iones , Modelos Moleculares , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Multimerización de Proteína , Imagen Individual de Molécula/métodos , Relación Estructura-Actividad , Zinc/química
4.
Chemistry ; 30(4): e202302464, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37909474

RESUMEN

Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO 11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.


Asunto(s)
Adhesión Bacteriana , Óxido de Zinc , Pseudomonas aeruginosa , Péptidos , Espectroscopía de Fotoelectrones , Microscopía de Fuerza Atómica , Biopelículas , Propiedades de Superficie
5.
Chemphyschem ; 25(6): e202300881, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206192

RESUMEN

Single molecules, embedded inside a well-defined insertion site of a single-crystalline host matrix, are sensitive probes of electric field via the induced Stark shift on their lifetime-limited electronic transition. Though the response of molecules to electric field has been shown to be relatively homogeneous, crystal symmetry allows for several, spectroscopically-indistinguishable, orientations of the net permanent dipole moment between the ground and excited state - the dipole vector - and this is problematic for measuring field orientation and magnitude. In this work, we measure for each terrylene molecule, embedded inside a new host matrix, the dipole vector independently by an electric field that we can rotate in the plane of the crystal. This single crystal host matrix, called [1]BenzoThieno[3,2-b]BenzoThiophene, induces a moderate symmetry breaking of the embedded centrosymmetric terrylene molecule, and gives rise to a net dipole moment of 0.28±0.09 Debye. Based on quantum chemistry calculations we propose an insertion site that best matches the experimental findings.

6.
Chemphyschem ; 25(7): e202300668, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38282140

RESUMEN

Absorption and emission spectra of single crystals of 2,3-dichloroathracene (23DCA) and 23DCA dispersed in n-nonane matrix were studied at 5 K. Singlet and triplet excitonic bands in the crystal were estimated to be at about 415 nm and at wavelengths shorter than 700 nm, respectively. Thus, from the spectroscopic point of view, these crystals satisfy all criteria for a transparent and rigid matrix for low temperature optical studies of single molecules of dibenzoterrylene, which have their purely electronic S0→S1 transition at around 785 nm. Quantum-chemistry calculations were used to analyze the spectra.

7.
Angew Chem Int Ed Engl ; 63(21): e202317756, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38523073

RESUMEN

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Agregado de Proteínas , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/análisis , Fosforilación , Imagen Individual de Molécula/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
8.
J Biol Chem ; 298(7): 102070, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623390

RESUMEN

The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (ß-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular ß-cardiac myosin (ßM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate ßM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in ßM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for ßM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between ßM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.


Asunto(s)
Miosinas Cardíacas , Cadenas Pesadas de Miosina , Animales , Ventrículos Cardíacos , Miosina Tipo II , Miosinas , Isoformas de Proteínas , Conejos , Miosinas Ventriculares
9.
Small ; : e2308233, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050945

RESUMEN

The interplay between chirality and magnetism is a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It is observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental evidence gathered through mesoscopic transport measurements, the exact mechanism behind CISS remains elusive. This study reports spin-selective electron transport through single helical aromatic hydrocarbons that are sublimed in vacuo onto ferromagnetic cobalt surfaces and examined with spin-polarized scanning tunneling microscopy (SP-STM) at a temperature of 5 K. Direct comparison of two enantiomers under otherwise identical conditions revealed magnetochiral conductance asymmetries of up to 50% when either the molecular handedness is exchanged or the magnetization direction of the STM tip or Co substrate is reversed. Importantly, the results rule out electron-phonon coupling and ensemble effects as primary mechanisms responsible for CISS.

10.
Proc Natl Acad Sci U S A ; 117(17): 9318-9328, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32273391

RESUMEN

Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Transferasas Alquil y Aril/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/fisiología , Alquilación/fisiología , ADN/metabolismo , Daño del ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Guanina/metabolismo , Microscopía de Fuerza Atómica/métodos , Mutagénesis , O(6)-Metilguanina-ADN Metiltransferasa/genética , Pinzas Ópticas
11.
Angew Chem Int Ed Engl ; 62(19): e202209252, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542681

RESUMEN

Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.


Asunto(s)
Tauopatías , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Conformación Molecular , Mutación
12.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237313

RESUMEN

ABC transporters utilize ATP for export processes to provide cellular resistance against toxins, antibiotics, and harmful metabolites in eukaryotes and prokaryotes. Based on static structure snapshots, it is believed that they use an alternating access mechanism, which couples conformational changes to ATP binding (outward-open conformation) and hydrolysis (inward-open) for unidirectional transport driven by ATP Here, we analyzed the conformational states and dynamics of the antibacterial peptide exporter McjD from Escherichia coli using single-molecule Förster resonance energy transfer (smFRET). For the first time, we established smFRET for an ABC exporter in a native-like lipid environment and directly monitor conformational dynamics in both the transmembrane- (TMD) and nucleotide-binding domains (NBD). With this, we unravel the ligand dependences that drive conformational changes in both domains. Furthermore, we observe intrinsic conformational dynamics in the absence of ATP and ligand in the NBDs. ATP binding and hydrolysis on the other hand can be observed via NBD conformational dynamics. We believe that the progress made here in combination with future studies will facilitate full understanding of ABC transport cycles.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Dominios Proteicos
13.
Chembiochem ; 23(23): e202200160, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36229427

RESUMEN

Small residue-mediated interhelical packing is ubiquitous in helical membrane proteins: however, the lipid dependence of its stability remains unclear. We previously demonstrated that the introduction of a GXXXG sequence in the middle of de novo-designed (AALALAA)3 helices (AALALAA AGLALGA AALALAA) facilitated their dimerization, which was abolished by cholesterol. Here single-pair FRET measurements revealed that a longer GXXXGXXXG segment (AALALAA A GLALGA AAGALAA) promoted helix dimerization in POPC/cholesterol bilayers, but not without cholesterol. The predicted dimer structures and degrees of helix packing suggested that helix dimers with small (∼10°) and large (∼55°) crossing angles were only stabilized in POPC and POPC/cholesterol membranes, respectively. A steric hindrance in the dimer interface and the large flexibility of helices prevented the formation of stable dimers. Therefore, amino acid sequences and lipid compositions distinctively constrain stable dimer structures in membranes.


Asunto(s)
Colesterol , Transferencia Resonante de Energía de Fluorescencia , Colesterol/química , Secuencia de Aminoácidos , Proteínas de la Membrana/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo
14.
Chemphyschem ; 23(4): e202100809, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34905640

RESUMEN

Single organic molecules are promising photon sources for quantum technologies. In this work we show photon emission from dibenzoterrylene, a widely used organic emitter, in a new host matrix, para-terphenyl. We present a reprecipitation growth method that produces para-terphenyl nanocrystals which are ideal for integration into nanophotonic devices due to their small size. We characterise the optical properties of dibenzoterrylene in nanocrystals at room and cryogenic temperatures, showing bright, narrow emission from a single molecule. Spectral data on the vibrational energies is presented and a further 25 additional molecules are characterised. This emitter-host combination has potential for quantum technology purposes with wavelengths suitable for interfacing with quantum memories.

15.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806475

RESUMEN

A single silver (Ag) nanoparticle (NP) collision was observed and analyzed in an alkaline solution using the electrocatalytic amplification (EA) method. Previously, the observation of a single Ag NP collision was only possible through limited methods based on a self-oxidation of Ag NPs or a blocking strategy. However, it is difficult to characterize the electrocatalytic activity of Ag NPs at a single NP level using a method based on the self-oxidation of Ag NPs. When using a blocking strategy, size analysis is difficult owing to the edge effect in the current signal. The fast oxidative dissolution of Ag NPs has been a problem for observing the staircase response of a single Ag NP collision signal using the EA method. In alkaline electrolyte conditions, Ag oxides are stable, and the oxidative dissolution of Ag NPs is sluggish. Therefore, in this study, the enhanced magnitude and frequency of the current response for single Ag NP collisions were obtained using the EA method in an alkaline electrolyte solution. The peak height and frequency of single Ag NP collisions were analyzed and compared with the theoretical estimation.


Asunto(s)
Nanopartículas del Metal , Plata , Electrólitos , Nanopartículas del Metal/química , Oxidación-Reducción , Plata/química
16.
Angew Chem Int Ed Engl ; 61(33): e202203769, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35718742

RESUMEN

Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.


Asunto(s)
Nanoporos , Carbohidratos , Fructosa , Galactosa , Monosacáridos/química
17.
Angew Chem Int Ed Engl ; 61(12): e202115892, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35032345

RESUMEN

The Co-based complex [Co(H2 B(pz)(pypz))2 ] (py=pyridine, pz=pyrazole) deposited on Ag(111) was investigated with scanning tunneling microscopy at ≈5 K. Due to a bis(tridentate) coordination sphere the molecules aggregate mainly into tetramers. Individual complexes in these tetramers undergo reversible transitions between two states with characteristic image contrasts when current is passed through them or one of their neighbors. Two molecules exhibit this bistability while the other two molecules are stable. The transition rates vary linearly with the tunneling current and exhibit an intriguing dependence on the bias voltage and its polarity. We interpret the states as being due to S=1 /2 and 3 /2 spin states of the Co2+ complex. The image contrast and the orders-of-magnitude variations of the switching yields can be tentatively understood from the calculated orbital structures of the two spin states, thus providing first insights into the mechanism of electron-induced excited spin-state trapping (ELIESST).

18.
Angew Chem Int Ed Engl ; 61(5): e202114388, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34788496

RESUMEN

The development of improved zeolite materials for applications in separation and catalysis requires understanding of mass transport. Herein, diffusion of single molecules is tracked in the straight and sinusoidal channels of the industrially relevant ZSM-5 zeolites using a combination of single-molecule localization microscopy and uniformly oriented zeolite thin films. Distinct motion behaviors are observed in zeolite channels with the same geometry, suggesting heterogeneous guest-host interactions. Quantification of the diffusion heterogeneities in the sinusoidal and straight channels suggests that the geometry of zeolite channels dictates the mobility and motion behavior of the guest molecules, resulting in diffusion anisotropy. The study of hierarchical zeolites shows that the addition of secondary pore networks primarily enhances the diffusivity of sinusoidal zeolite channels, and thus alleviating the diffusion limitations of microporous zeolites.

19.
Angew Chem Int Ed Engl ; 61(39): e202209463, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35922882

RESUMEN

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited. Here, we demonstrate that BLM possesses the intrinsic ability for phase separation and can co-phase separate with ssDNA to form dynamically arrested protein/ssDNA co-condensates. The introduction of ATP potentiates the capability of BLM to condense on ssDNA, which further promotes the compression of ssDNA against a resistive force of up to 60 piconewtons. Moreover, BLM is also capable of condensing replication protein A (RPA)- or RAD51-coated ssDNA, before which it generates naked ssDNA by dismantling these ssDNA-binding proteins. Overall, our findings identify an unexpected characteristic of a DNA helicase and provide a new angle of protein/ssDNA co-condensation for understanding the genomic instability caused by BLM overexpression under diseased conditions.


Asunto(s)
Síndrome de Bloom , RecQ Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Síndrome de Bloom/genética , ADN , Reparación del ADN , ADN de Cadena Simple , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
20.
Biochem Biophys Res Commun ; 568: 43-47, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34175689

RESUMEN

Parkinson's disease (PD) is linked to aggregation of the protein α-synuclein (aS) into amyloid fibers. aS is proposed to regulate synaptic activity and may also play a role in gene regulation via interaction with DNA in the cell nucleus. Here, we address the role of the negatively-charged C-terminus in the interaction between aS and DNA using single-molecule techniques. Using nanofluidic channels, we demonstrate that truncation of the C-terminus of aS induces differential effects on DNA depending on the extent of the truncation. The DNA extension increases for full-length aS and the (1-119)aS variant, but decreases about 25% upon binding to the (1-97)aS variant. Atomic force microscopy imaging showed full protein coverage of the DNA at high aS concentration. The characterization of biophysical properties of DNA when in complex with aS variants may provide important insights into the role of such interactions in PD, especially since C-terminal aS truncations have been found in clinical samples from PD patients.


Asunto(s)
ADN/metabolismo , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , ADN/química , Humanos , Conformación de Ácido Nucleico , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Dominios Proteicos , alfa-Sinucleína/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda