RESUMEN
Real-time global positioning is important for container-based logistics. However, a challenge in real-time global positioning arises from the frequency of both global positioning system (GPS) calls and GPS-denied environments during transportation. This paper proposes a novel system named ConGPS that integrates both inertial sensor and electronic map data. ConGPS estimates the speed and heading direction of a moving container based on the inertial sensor data, the container trajectory, and the speed limit information provided by an electronic map. The directional information from magnetometers, coupled with map-matching algorithms, is employed to compute container trajectories and current positions. ConGPS significantly reduces the frequency of GPS calls required to maintain an accurate current position. To evaluate the accuracy of the system, 280 min of driving data, covering a distance of 360 km, are collected. The results demonstrate that ConGPS can maintain positioning accuracy within a GPS-call interval of 15 min, even if using low-cost inertial sensors in GPS-denied environments.
RESUMEN
Waste collection is one of the targets of smart cities. It is a daily task in urban areas and it entails the planning of waste truck routes, taking into account environmental, economic and social factors. In this work, an optimal path planning algorithm has been developed together with a practical software platform for smart and sustainable cities that enables computing the optimal waste collection routes, minimizing the impact, both environmental (CO2 emissions and acoustic damage) and socioeconomic (number of trucks to be used and fuel consumption). The algorithm is executed in Net2Plan, an open-source planning tool, typically used for modeling and planning communication networks. Net2Plan facilitates the introduction of the city layout input information to the algorithm, automatically importing it from geographical information system (GIS) databases using the so-called Net2Plan-GIS library, which can also include positions of smart bins. The algorithm, Net2Plan tool and its extension are open-source, available in a public repository. A practical case in the city of Cartagena (Spain) is presented, where the optimal path planning for plastic waste collection is addressed. This work contributes to the urban mobility plans of smart cities and could be extended to other smart cities scenarios with requests of optimal path planning.
RESUMEN
Monitoring fluid intake is essential to help people manage their individual fluid intake behaviors and achieve adequate hydration. Previous studies of fluid intake assessment approaches based on inertial sensors can be categorized into wrist-worn-based and smart-container-based approaches. This study aims to analyze wrist-worn-based and smart-container-based fluid intake assessment approaches using inertial sensors. The comparison of these two approaches should be analyzed according to gesture recognition and volume estimation. In addition, the influence of the fill level and sip size information on the performance is explored in this study. The accuracy of gesture recognition with postprocessing is 92.89% and 91.8% for the wrist-worn-based approach and smart-container-based approach, respectively. For volume estimation, sip-size-dependent models can achieve better performance than general SVR models for both wrist-worn-based and smart-container-based approaches. The improvement of MAPE, MAD, and RMSE can reach over 50% except MAPE for small sip sizes. The results demonstrate that the sip size information and recognition performance are important for fluid intake assessment approaches.