Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Transl Med ; 22(1): 611, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956651

RESUMEN

The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.


Asunto(s)
Grafito , Nanocompuestos , Neoplasias , Grafito/química , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Animales
2.
Mol Pharm ; 21(6): 2713-2726, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38706253

RESUMEN

Breast cancer is one of the leading causes of mortality in women globally. The efficacy of breast cancer treatments, notably chemotherapy, is hampered by inadequate localized delivery of anticancer agents to the tumor site, resulting in compromised efficacy and increased systemic toxicity. In this study, we have developed redox-sensitive poly(lactic-co-glycolic acid) (PLGA) nanoparticles for the smart delivery of palbociclib (PLB) to breast cancer. The particle size of formulated PLB@PLGA-NPs (nonredox-sensitive) and RS-PLB@PLGA-NPs (redox-sensitive) NPs were 187.1 ± 1.8 nm and 193.7 ± 1.5 nm, respectively. The zeta potentials of nonredox-sensitive and redox-sensitive NPs were +24.99 ± 2.67 mV and +9.095 ± 1.87 mV, respectively. The developed NPs were characterized for morphological and various physicochemical parameters such as SEM, TEM, XRD, DSC, TGA, XPS, etc. The % entrapment efficiency of PLB@PLGA-NPs and RS-PLB@PLGA-NPs was found to be 85.48 ± 1.29% and 87.72 ± 1.55%, respectively. RS-PLB@PLGA-NPs displayed a rapid drug release at acidic pH and a higher GSH concentration compared to PLB@PLGA-NPs. The cytotoxicity assay in MCF-7 cells suggested that PLB@PLGA-NPs and RS-PLB@PLGA-NPs were 5.24-fold and 14.53-fold higher cytotoxic compared to the free PLB, respectively. Further, the cellular uptake study demonstrated that redox-sensitive NPs had significantly higher cellular uptake compared to nonredox-sensitive NPs and free Coumarin 6 dye. Additionally, AO/EtBr assay and reactive oxygen species analysis confirmed the superior activity of RS-PLB@PLGA-NPs over PLB@PLGA-NPs and free PLB. In vivo anticancer activity in dimethyl-benz(a)anthracene-induced breast cancer rats depicted that RS-PLB@PLGA-NPs was highly effective in reducing the tumor size, hypoxic tumor, and tumor vascularity compared to PLB@PLGA-NPs and free PLB. Further, hemocompatibility study reveals that the developed NPs were nonhemolytic to human blood. Moreover, an in vivo histopathology study confirmed that both nanoparticles were safe and nontoxic to the vital organs.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Oxidación-Reducción , Piperazinas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Piridinas , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Piridinas/química , Piridinas/administración & dosificación , Nanopartículas/química , Piperazinas/química , Piperazinas/farmacología , Piperazinas/administración & dosificación , Ratas , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Tamaño de la Partícula , Portadores de Fármacos/química , Ratas Sprague-Dawley , Línea Celular Tumoral
3.
Nano Lett ; 23(11): 4732-4740, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272543

RESUMEN

Sustainable and precise fortification practices are necessary to ensure food security for the increasing human population. Precision agriculture aims to minimize the use of fertilizers and pesticides by developing smart materials for real-life agricultural practices. Here, we show that biomimetic mineralization can be efficiently employed to encapsulate and controllably release plant biostimulants (MiZax-3) to improve the quality and yield of capsicum (Capsicum annum) crops in field experiments. ZIF-8 encapsulation of MiZax-3 (MiZIFs) could significantly enhance its stability up to around 679 times (6p value = 0.0072) at field conditions. Our results demonstrate that the coordinating Zn ions and the MiZax-3 play a vital role in improving Zn content in the produced fruits by 2-fold, which is the first report of this nature on Zn content in fruits. We envision this platform as a starting point to investigate other biocompatible coordination-based platforms for micronutrient delivery in precision agriculture.


Asunto(s)
Micronutrientes , Oligoelementos , Humanos , Biomimética , Agricultura/métodos , Productos Agrícolas
4.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805508

RESUMEN

A series of troxerutin-based macromolecules with ten poly(acrylic acid) (PAA) or poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) homopolymer side chains were synthesized by a supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) approach. The prepared precisely-defined structures with low dispersity (Mw/Mn < 1.09 for PAA-based, and Mw/Mn < 1.71 for PDMAEMA-based macromolecules) exhibited pH-responsive behavior depending on the length of the polymer grafts. The properties of the received polyelectrolytes were investigated by dynamic light scattering (DLS) measurement to determine the hydrodynamic diameter and zeta potential upon pH changes. Additionally, PDMAEMA-based polymers showed thermoresponsive properties and exhibited phase transfer at a lower critical solution temperature (LCST). Thanks to polyelectrolyte characteristics, the prepared polymers were investigated as smart materials for controlled release of quercetin. The influence of the length of the polymer grafts for the quercetin release profile was examined by UV-VIS spectroscopy. The results suggest the strong correlation between the length of the polymer chains and the efficiency of active substance release, thus, the adjustment of the composition of the macromolecules characterized by branched architecture can precisely control the properties of smart delivery systems.


Asunto(s)
Resinas Acrílicas/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Liberación de Fármacos , Metacrilatos/química , Nylons/química , Polimerizacion , Quercetina/química , Temperatura
5.
Macromol Rapid Commun ; 40(17): e1800879, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30817069

RESUMEN

Smart delivery systems have gained momentum over the last few decades due to their potential to realize enhanced therapeutic efficacy. Poly(glycidyl methacrylate)s (PGMAs), which spring up like mushrooms, have drawn great attention in the theranostics field, especially in multifunctional theranostic systems. The marriage of PGMAs with functional inorganic cores is expected to integrate diagnosis (e.g., fluorescence, X-ray computed tomography, magnetic resonance, photoacoustic and upconversion luminescence imaging), treatment, or multimodal synergistic therapies (e.g., chemotherapy, gene therapy, photothermal therapy) in one pot for personalized medicine. In this review, recent progress in various PGMA-coated nanohybrids based on the type of integrated inorganic nanoparticle, including silica nanoparticles, magnetic nanoparticles, quantum dots, gold nanoparticles, gold nanorods, metal-organic frameworks, cellulose nanocrystals, and their core-shell nanostructures is systematically reviewed. Future work in this field is anticipated to be devoted to developing efficient real-time-imaging-guided multimodal synergistic therapies.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Nanomedicina Teranóstica , Humanos , Imagen Multimodal
6.
J Nanobiotechnology ; 17(1): 100, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31542052

RESUMEN

Pesticides and fertilizers are widely used to enhance agriculture yields, although the fraction of the pesticides applied in the field that reaches the targets is less than 0.1%. Such indiscriminate use of chemical pesticides is disadvantageous due to the cost implications and increasing human health and environmental concerns. In recent years, the utilization of nanotechnology to create novel formulations has shown great potential for diminishing the indiscriminate use of pesticides and providing environmentally safer alternatives. Smart nano-based pesticides are designed to efficiently delivery sufficient amounts of active ingredients in response to biotic and/or abiotic stressors that act as triggers, employing targeted and controlled release mechanisms. This review discusses the current status of stimuli-responsive release systems with potential to be used in agriculture, highlighting the challenges and drawbacks that need to be overcome in order to accelerate the global commercialization of smart nanopesticides.


Asunto(s)
Preparaciones de Acción Retardada/química , Nanoestructuras/química , Plaguicidas/química , Agricultura/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanotecnología/métodos , Plaguicidas/efectos adversos , Estrés Fisiológico
7.
Sci Total Environ ; 929: 172533, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649050

RESUMEN

The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.


Asunto(s)
Agricultura , Fertilizantes , Agricultura/métodos , Productos Agrícolas , Nanotecnología , Desarrollo Sostenible
8.
Int J Biol Macromol ; 260(Pt 2): 129522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246470

RESUMEN

Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.


Asunto(s)
Quitosano , Nanopartículas , Plaguicidas , Quitosano/química , Productos Agrícolas , Agricultura/métodos , Plaguicidas/farmacología
9.
Trends Plant Sci ; 29(2): 150-166, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38233253

RESUMEN

Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.


Asunto(s)
Amigos , Estrés Fisiológico , Humanos , Plantas , Agricultura
10.
Biotechnol Adv ; 74: 108393, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825215

RESUMEN

Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácidos Nucleicos , Ácidos Nucleicos/química , Aptámeros de Nucleótidos/química , Humanos , ADN/química , Animales
11.
Bioact Mater ; 19: 75-87, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35441117

RESUMEN

Osteoporosis is one of the most disabling consequences of aging, osteoporotic fractures and higher risk of the subsequent fractures leading to substantial disability and deaths, indicating both local fractures healing and the early anti-osteoporosis therapy are of great significance. Teriparatide is strong bone formation promoter effective in treating osteoporosis, while side effects limit clinical applications. Traditional drug delivery is lack of sensitive and short-term release, finding a new non-invasive and easily controllable drug delivery to not only repair the local fractures but also improve total bone mass has remained a great challenge. Thus, bioinspired by the natural bone components, we develop appropriate interactions between inorganic biological scaffolds and organic drug molecules, achieving both loaded with the teriparatide in the scaffold and capable of releasing on demand. Herein, biomimetic bone microstructure of mesoporous bioglass, a near-infrared ray triggered switch, thermosensitive liposomes based on a valve, and polydopamine coated as a heater is developed rationally for osteoporotic bone regeneration. Teriparatide is pulsatile released from intelligent delivery, not only rejuvenating osteoporotic bone defect, but also presenting strong systemic anti-osteoporosis therapy. This biomimetic bone carrying novel drug delivery platform is well worth expecting to be a new promising strategy and clinically commercialized to help patients survive from the osteoporotic fracture.

12.
Adv Food Nutr Res ; 106: 31-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37722776

RESUMEN

Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.


Asunto(s)
Alimentos , Nutrientes , Humanos , Disponibilidad Biológica , Manipulación de Alimentos , Tracto Gastrointestinal
13.
Biosci Rep ; 43(11)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37881894

RESUMEN

The need to minimise the impact of phytosanitary treatments for disease control boosted researchers to implement techniques with less environmental impact. The development of technologies using molecular mechanisms based on the modulation of metabolism by short dsRNA sequences appears promising. The intrinsic fragility of polynucleotides and the high cost of these techniques can be circumvented by nanocarriers that protect the bioactive molecule enabling high efficiency delivery to the leaf surface and extending its half-life. In this work, a specific protocol was developed aiming to assess the best methodological conditions for the synthesis of low-size chitosan nanoparticles (NPs) to be loaded with nucleotides. In particular, NPs have been functionalised with partially purified Green Fluorescent Protein dsRNAs (GFP dsRNA) and their size, surface charge and nucleotide retention capacity were analysed. Final NPs were also stained with FITC and sprayed on Nicotiana benthamiana leaves to assess, by confocal microscopy, both a distribution protocol and the fate of NPs up to 6 days after application. Finally, to confirm the ability of NPs to increase the efficacy of dsRNA interference, specific tests were performed: by means of GFP dsRNA-functionalised NPs, the nucleotide permanence during time was assessed both in vitro on detached wild-type N. benthamiana leaves and in planta; lastly, the inhibition of Botrytis cinerea on single leaves was also evaluated, using a specific fungal sequence (Bc dsRNA) as the NPs' functionalising agent. The encouraging results obtained are promising in the perspective of long-lasting application of innovative treatments based on gene silencing.


Asunto(s)
Quitosano , Nanopartículas , ARN Bicatenario/genética , Interferencia de ARN , Protección de Cultivos , Nucleótidos
14.
Gels ; 9(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36975648

RESUMEN

Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability-features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.

15.
Pharmaceutics ; 15(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765283

RESUMEN

Smart drug delivery, through which the drug molecules are delivered according to the requests of human biological rhythms or by maximizing drug therapeutic effects, is highly desired in pharmaceutics. Many biomacromolecules have been exploited for this application in the past few decades, both in industry and laboratories. Biphasic release, with an intentional pulsatile release and a following extended release stage, represents a typical smart drug delivery approach, which aims to provide fast therapeutic action and a long time period of effective blood drug concentration to the patients. In this study, based on the use of a well-known biomacromolecule, i.e., cellulose acetate (CA), as the drug (acetaminophen, ATP)-based sustained release carrier, a modified coaxial electrospraying process was developed to fabricate a new kind of core-shell nanoparticle. The nanoparticles were able to furnish a pulsatile release of ATP due to the shell polyvinylpyrrolidone (PVP). The time cost for a release of 30% was 0.32 h, whereas the core-shell particles were able to provide a 30.84-h sustained release of the 90% loaded ATP. The scanning electron microscope and transmission electron microscope results verified in terms of their round surface morphologies and the obvious core-shell double-chamber structures. ATP presented in both the core and shell sections in an amorphous state owing to its fine compatibility with CA and PVP. The controlled release mechanisms of ATP were suggested. The disclosed biomacromolecule-based process-structure-performance relationship can shed light on how to develop new sorts of advanced nano drug delivery systems.

16.
ACS Appl Bio Mater ; 6(6): 2314-2324, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37254937

RESUMEN

An effective approach to accelerating wound healing is through a smart delivery platform that releases drugs according to the needs of different healing periods. With the growing demand for wound care and treatment, electrospun nanofibers have attracted considerable attention owing to their simple and versatile method of manufacturing, unique structure, and biological functions similar to those of the extracellular matrix. Moreover, nanofibers can be loaded with active substances that promote targeted wound healing. In this study, we investigated the performance of a core-shell nanofiber platform loaded with two drugs in the core and shell, respectively. The shell polymer, poly-l-lactic acid, initially releases the encapsulated drug into an aqueous solution at room temperature. Gold nanorods with near-infrared absorbance were incorporated in the core polymer poly(N-isopropylacrylamide) to produce localized heat by plasmon resonance when exposed to light. This allows the thermally responsive core polymer to swell and shrink for programmable drug release. Our study provides a versatile platform for controlled and safe drug delivery to wound sites and could be applied to the treatment of other topical diseases.


Asunto(s)
Nanofibras , Nanofibras/química , Liberación de Fármacos , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Polímeros/farmacología
17.
Adv Colloid Interface Sci ; 309: 102757, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152374

RESUMEN

Liposomes are self-assembled, closed spherical systems with a lipid bilayer, composed of i.a. one or more amphiphilic phospholipids, and widely used in the pharmaceutical, cosmetic and food industries. Whether composed of natural or synthetic lipids, liposomal vehicles are biocompatible, biodegradable, non-toxic and non-immunogenic carriers of active substances, both hydrophilic and hydrophobic by nature. Progress in liposome technology, modulation of the lipid composition, size and charge of the vesicle and modification of their surface has enabled the shift from conventional vesicles to "smart-generation" liposomes. Currently, liposomal vesicles are applied to improve the therapeutic effect of active substances and to provide the controlled release of drugs, thus prolonging the biological half-life or reducing toxicity of the actives. This paper reviews the recent process developments in liposomal systems, especially over the past decade. The methods of the systems preparation, characterisation and application are described. Additionally, methods of liposome surface modification and the mechanism of active substances delivery are outlined.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Liposomas/química , Preparaciones de Acción Retardada , Fosfolípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Sistemas de Liberación de Medicamentos
18.
Macromol Biosci ; 22(4): e2100482, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35068059

RESUMEN

Inflammatory bowel disease (IBD) is characterized by increased levels of reactive oxygen species (ROS) in inflamed areas of the gastrointestinal tract and in circulating immune cells, providing novel opportunities for targeted drug delivery. In the recent experiments, oxidation-responsive polymeric nanostructures selectively degrade in the presence of H2 O2 . Based on these results, it is hypothesized that such degradation process can be triggered in a similar way by the incubation with stimulated monocytes isolated from patients with IBD. A first indication is given by a significant correlation between excessive ROS and degradation of micelles in monocytes isolated from healthy individuals after phorbol 12-myristate 13-acetate (PMA) stimulation. But even if the ROS-sensitive micelles are incubated with nonstimulated monocytes from patients with active IBD, a spontaneous degradation is observed in contrast to micelles incubated with monocytes from healthy donors. The findings indicate that the thioether-based micelles are indeed promising for selective drug release in the presence of activated immune cells.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Micelas , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Monocitos/metabolismo , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo
19.
Polymers (Basel) ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080771

RESUMEN

Conventional oral formulations are mainly absorbed in the small intestine. This limits their use in the treatment of some diseases associated with the colon, where the drug has to act topically at the inflammation site. This paved the way for the development of a smart colonic drug delivery system, thereby improving the therapeutic efficacy, reducing the dosing frequency and potential side effects, as well as improving patient acceptance, especially in cases where enemas or other topical preparations may not be effective alone in treating the inflammation. In healthy individuals, it takes an oral medication delivery system about 5 to 6 h to reach the colon. A colonic drug delivery system should delay or prohibit the medication release during these five to six hours while permitting its release afterward. The main aim of this study was to develop a smart drug delivery system based on pH-sensitive polymeric formulations, synthesized by a free-radical bulk polymerization method, using different monomer and crosslinker concentrations. The formulations were loaded with 5-amino salicylic acid as a model drug and Capmul MCM C8 as a bioavailability enhancer. The glass transition temperature (Tg), tensile strength, Young's modulus, and tensile elongation at break were all measured as a part of the dried films' characterization. In vitro swelling and release studies were performed to assess the behavior of the produced formulations. The in vitro swelling and release evaluation demonstrated the potential ability of the developed system to retard the drug release at conditions mimicking the stomach and small intestine while triggering its release at conditions mimicking the colon, which indicates its promising applicability as a potential smart colonic drug delivery system.

20.
Prog Biomater ; 11(2): 219-227, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35532846

RESUMEN

Nanohydrogels (NHs) with the benefits of both nanomaterials and hydrogels unlock novel opportunities and applications in biomedicine. Nowadays, cationic NHs have attracted attention in the delivery of genetic materials into cells. Herein, by using reversible addition-fragmentation chain transfer method, an NH-based poly(hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and cross-linked by poly(ethylene glycol)diacrylate with pH responsiveness character was developed. Several techniques including nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and gel permeation chromatography confirmed the success in the synthesis. The pH responsiveness of the developed NH was shown by transmission electron microscopy and dynamic light scattering technique. The average sizes of NHs in the normal (7.4) and acidic pH (5.5) were 180 and 390 nm, respectively. The ability of the developed NH to condense genetic materials was checked using gel retardation assay with different ratios of NH and pCMV6-IRES-AcGFP, as a plasmid encoding green fluorescence protein. Results of gel retardation assay showed a decreasing trend in plasmid electrophoretic mobility with the increase in the NH concentration. The NH/plasmid complexes were stopped completely at the ratio of 5 and the plasmid band vanished at the ratio of 10. The quantitative and qualitative results of the cell transfection experiment using different ratios of NH/plasmid showed the ability of NH to carry plasmid molecules into the cancerous cells. The best transfection efficiency was observed by nanohydrogel/plasmid weight ratio of 10, while other ratios including 2, 5 and 20 showed 0.8, 10 and 12% of transfection efficiency, respectively. All the assessed factors showed that NH has the potential to be considered as an efficient gene delivery vehicle.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda