Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.494
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2312337121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923987

RESUMEN

Sodium-ion batteries (SIBs) as one of the promising alternatives to lithium-ion batteries have achieved remarkable progress in the past. However, the all-climate performance is still very challenging for SIBs. Herein, 15-Crown-5 (15-C-5) is screened as an electrolyte additive from a number of ether molecules theoretically. The good sodiophilicity, high molecule rigidity, and bulky size enable it to reshape the solvation sheath and promote the anion engagement in the solvated structures by molecule crowding. This change also enhances Na-ion transfer, inhibits side reactions, and leads to a thin and robust solid-electrolyte interphase. Furthermore, the electrochemical stability and operating temperature windows of the electrolyte are extended. These profits improve the electrochemical performance of SIBs in all climates, much better than the case without 15-C-5. This improvement is also adopted to µ-Sn, µ-Bi, hard carbon, and MoS2. This work opens a door to prioritize the potential molecules in theory for advanced electrolytes.

2.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625942

RESUMEN

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

3.
Proc Natl Acad Sci U S A ; 121(31): e2319193121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052833

RESUMEN

Iron-based hexacyanoferrate (Fe-HCF) are promising cathode materials for sodium-ion batteries (SIBs) due to their unique open-channel structure that facilitates fast ion transport and framework stability. However, practical implementation of SIBs has been hindered by low initial Coulombic efficiency (ICE), poor rate performance, and short lifespan. Herein, we report a coordination engineering to synthesize sodium-rich Fe-HCF as cathodes for SIBs through a uniquely designed 10-kg-scale chemical reactor. Our study systematically investigated the relationship between coordination surroundings and the electrochemical behavior. Building on this understanding, the cathode delivered a reversible capacity of 99.3 mAh g-1 at 5 C (1 C = 100 mA g-1), exceptional rate capability (51 mAh g-1 even at 100 C), long lifespan (over 15,000 times at 50 C), and a high ICE of 92.7%. A full cell comprising the Fe-HCF cathode and hard carbon (HC) anode exhibited an impressive cyclic stability with a high-capacity retention rate of 98.3% over 1,000 cycles. Meanwhile, this material can be readily scaled to the practical levels of yield. The findings underscore the potential of Fe-HCF as cathodes for SIBs and highlight the significance of controlling nucleation and morphology through coordination engineering for a sustainable energy storage system.

4.
Nano Lett ; 24(11): 3331-3338, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457459

RESUMEN

1T-MoS2 has become an ideal anode for sodium-ion batteries (SIBs). However, the metastable feature of 1T-MoS2 makes it difficult to directly synthesize under normal conditions. In addition, it easily transforms into 2H phase via restacking, resulting in inferior electrochemical performance. Herein, the electron configuration of Mo 4d orbitals is modulated and the stable 1T-MoS2 is constructed by nickel (Ni) introduction (1T-Ni-MoS2). The original electron configuration of Mo 4d orbitals is changed via the electron injection by Ni, which triggers the phase transition from 2H to 1T phase, thus improving the electrical conductivity and accelerating the redox kinetics of the material. Consequently, 1T-Ni-MoS2 exhibits superior rate capability (266.8 mAh g-1 at 10 A g-1) and excellent cycle life (358.7 mAh g-1 at 1 A g-1 after 350 cycles). In addition, the assembled Na3V2(PO4)3/C||1T-Ni-MoS2 full cells deliver excellent electrochemical properties and show great prospects in energy storage devices.

5.
Nano Lett ; 24(32): 9793-9800, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087649

RESUMEN

O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g-1 at 1C, with 83.8 mAh g-1 maintained after 300 cycles (capacity retention of 81.4%).

6.
Nano Lett ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235045

RESUMEN

Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.

7.
Nano Lett ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230971

RESUMEN

Sodium ion batteries (SIBs) are promising postlithium battery technologies with high safety and low cost. However, their development is hampered by complicated electrode material preparation and unsatisfactory sodium storage performance. Here, a bismuth/N-doped carbon nanosheets (Bi/N-CNSs) composite featuring a quasi-array structure (alternated porous Bi layers and N-CNSs) with hierarchical Bi distribution (large particles of ∼35 nm in Bi layers and ultrafine Bi of ∼8 nm on N-CNSs) is prepared. Bi/N-CNSs delivers an ultralong-lifespan of 26000 cycles at 5 A g-1 and prominent rate capability of 91.5% capacity retention at 100 A g-1. Even at -40 °C, it exhibits a high rate capability of 161 mAh g-1 at 5 A g-1. Notably, the involved preparation method is characterized by a high yield of 14.53 g in a single laboratory batch, which can be further scaled up, and such a method can also be extended to synthesize other metallic-based materials.

8.
Nano Lett ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225724

RESUMEN

To overcome obstacles hindering the commercialization of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), we introduce a cost-effective single-step sulfurization strategy for synthesizing iron sulfide (Fe0.975S) nanohybrids, augmented by N,S codoped carbon. The resulting N,S codoped carbon-coated Fe0.975S (Fe0.975S@NSC) electrode exhibits exceptional potential as a highly reversible anode material for both LIBs and SIBs. With impressive initial discharge and charge capacities (1658.2 and 1254.9 mAh g-1 for LIBs and 1450.9 and 1077.1 mAh g-1 for SIBs), the electrode maintains substantial capacity retention (900 mA h g-1 after 1000 cycles for LIBs and 492.5 mA h g-1 after 600 cycles for SIBs at 1.0 A g-1). The LiMn2O4//Fe0.975S@NSC and Na3V2(PO4)3//Fe0.975S@NSC full batteries can maintain excellent reversible capacity and robust cycling stability. Ex situ and in situ X-ray diffraction, density functional theory (DFT) calculations, and kinetics analysis confirm the promising energy storage potential of the Fe0.975S@NSC composite.

9.
Small ; 20(7): e2305686, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37727094

RESUMEN

Highly porous carbon materials with a rationally designed pore structure can be utilized as reservoirs for metal or nonmetal components. The use of small-sized metal or metal compound nanoparticles, completely encapsulated by carbon materials, has attracted significant attention as an effective approach to enhancing sodium ion storage properties. These materials have the ability to mitigate structural collapse caused by volume expansion during the charging process, enable short ion transport length, and prevent polysulfide elution. In this study, a concept of highly porous carbon-coated carbon nanotube (CNT) porous microspheres, which serve as excellent reservoir materials is suggested and a porous microsphere is developed by encapsulating iron sulfide nanocrystals within the highly porous carbon-coated CNTs using a sulfidation process. Furthermore, various sulfidation processes to determine the optimal method for achieving complete encapsulation are investigated by comparing the morphologies of diverse iron sulfide-carbon composites. The fully encapsulated structure, combined with the porous carbon, provides ample space to accommodate the significant volume changes during cycling. As a result, the porous iron sulfide-carbon-CNT composite microspheres exhibited outstanding cycling stability (293 mA h g-1 over 600 cycles at 1 A g-1 ) and remarkable rate capability (100 mA h g-1 at 5 A g-1 ).

10.
Small ; 20(11): e2311024, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38239090

RESUMEN

Sodium-ion batteries (SIBs) have gradually become one of the most promising energy storage techniques in the current era of post-lithium-ion batteries. For anodes, transitional metal selenides (TMSe) based materials are welcomed choices , owing to relatively higher specific capacities and enriched redox active sites. Nevertheless, current bottlenecks are blamed for their poor intrinsic electronic conductivities, and uncontrollable volume expansion during redox reactions. Given that, an interfacial-confined isochronous conversion strategy is proposed, to prepare orthorhombic/cubic biphasic TMSe heterostructure, namely CuSe/Cu3 VSe4 , through using MXene as the precursor, followed by Cu/Se dual anchorage. As-designed biphasic TMSe heterostructure endows unique hierarchical structure, which contains adequate insertion sites and diffusion spacing for Na ions, besides, the surficial pseudocapacitive storage behaviors can be also proceeded like 2D MXene. By further investigation on electronic structure, the theoretical calculations indicate that biphasic CuSe/Cu3 VSe4 anode exhibits well-enhanced properties, with smaller bandgap and thus greatly improves intrinsic poor conductivities. In addition, the dual redox centers can enhance the electrochemical Na ions storage abilities. As a result, the as-designed biphasic TMSe anode can deliver a reversible specific capacity of 576.8 mAh g-1 at 0.1 A g-1 , favorable Na affinity, and reduced diffusion barriers. This work discloses a synchronous solution toward demerits in conductivities and lifespan, which is inspiring for TMSe-based anode development in SIBs systems.

11.
Small ; : e2400498, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863125

RESUMEN

Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6 V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.

12.
Small ; 20(4): e2305021, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712116

RESUMEN

The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.

13.
Small ; 20(3): e2304892, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691021

RESUMEN

Layered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g-1 after 500 cycles at 1 A g-1 and a long-term cyclic stability with capacity of 274.4 mA h g-1 after 2800 cycles at 5 A g-1 . In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X-ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.

14.
Small ; 20(9): e2306465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840421

RESUMEN

With the limited resources and high cost of lithium-ion batteries (LIBs) and the ever-increasing market demands, sodium-ion batteries (SIBs) gain much interest due to their economical sustainability, and similar chemistry and manufacturing processes to LIBs. As cathodes play a vital role in determining the energy density of SIBs, Mn-based layered oxides are promising cathodes due to their low cost, environmental friendliness, and high theoretical capacity. However, the main challenge is structural instability upon cycling at high voltage. Herein, Mg is introduced into the P2-type Na0.62 Ni0.25 Mn0.75 O2 cathode to enhance electrochemical stability. By combining electrochemical testing and material characterizations, it is found that substituting 10 mol% Mg can effectively alleviate the P2-O2 phase transition, Jahn-Teller distortion, and irreversible oxygen redox. Moreover, structural integrity is greatly improved. These lead to enhanced electrochemical performances. With the optimized sample, a remarkable capacity retention of 92% in the half cell after 100 cycles and 95% in the full cell after 170 cycles can be achieved. Altogether, this work provides an alternative way to stabilize P2-type Mn-based layer oxide cathodes, which in turn, put forward the development of this material for the next-generation SIBs.

15.
Small ; 20(6): e2304124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37749960

RESUMEN

Sodium-ion batteries are a promising substitute for lithium batteries due to the abundant resources and low cost of sodium. Herein, honeycomb-shaped MoSe2 /reduced graphene oxide (rGO) composite materials are synthesized from graphene oxide (GO) and MoSe2 through a one-step solvothermal process. Experiments show that the 3D honeycomb structure provides excellent electrolyte penetration while alleviating the volume change during electrochemical cycling. An anode prepared with MoSe2 /rGO composites exhibits significantly improved sodium-ion storage properties, where a large reversible capacity of 215 mAh g-1 is obtained after 2700 cycles at the current density of 30.0 A g-1 or after 5900 cycles at 8.0 A g-1 . When such an anode is paired with Na3 V2 (PO4 )3 to form a full cell, a reversible specific capacity of 107.5 mAh g-1 can be retained after 1000 cycles at the current of 1.0 A g-1 . Transmission electron microscopy, X-ray photoelectron spectroscopy and in situ X-ray diffraction (XRD) characterization reveal the reversible storage reaction of Na ions in the MoSe2 /rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique honeycomb microstructure and the use of ether-based electrolytes. This study illustrates that combining rGO with ether-based electrolytes has tremendous potential in constructing high-performance sodium-ion batteries.

16.
Small ; 20(2): e2305019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661575

RESUMEN

Na-based layered transition metal oxides with an O3-type structure are considered promising cathodes for sodium-ion batteries. However, rapid capacity fading, and poor rate performance caused by serious structural changes and interfacial degradation hamper their use. In this study, a NaPO3 surface modified O3-type layered NaNi1/3 Fe1/3 Mn1/3 O2 cathode is synthesized, with improved high-voltage stability through protecting layer against acid attack, which is achieved by a solid-gas reaction between the cathode particles and gaseous P2 O5 . The NaPO3 nanolayer on the surface effectively stabilizes the crystal structure by inhibiting surface parasitic reactions and increasing the observed average voltage. Superior cyclic stability is exhibited by the surface-modified cathode (80.1% vs 63.6%) after 150 cycles at 1 C in the wide voltage range of 2.0 V-4.2 V (vs Na+ /Na). Moreover, benefiting from the inherent ionic conduction of NaPO3 , the surface-modified cathode presents excellent rate capability (103 mAh g-1  vs 60 mAh g-1 ) at 10 C. The outcome of this study demonstrates a practically relevant approach to develop high rate and durable sodium-ion battery technology.

17.
Small ; 20(11): e2306589, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37884465

RESUMEN

Partial substitution of V by other transition metals in Na3 V2 (PO4 )3 (NVP) can improve the electrochemical performance of NVP as a cathode for sodium-ion batteries (SIBs). Herein, phosphate Na-V-Mn-Ni-containing composites based on NASICON (Natrium Super Ionic Conductor)-type structure have been fabricated by sol-gel method. The synchrotron-based X-ray study, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) studies show that manganese/nickel combinations successfully substitute the vanadium in its site within certain limits. Among the received samples, composite based on Na3.83 V1.17 Mn0.58 Ni0.25 (PO4 )3 (VMN-0.5, 108.1 mAh g-1 at 0.2 C) shows the highest electrochemical ability. The cyclic voltammetry, galvanostatic intermittent titration technique, in situ XRD, ex situ XPS, and bond valence site energy calculations exhibit the kinetic properties and the sodium storage mechanism of VMN-0.5. Moreover, VMN-0.5 electrode also exhibits excellent electrochemical performance in quasi-solid-state sodium metal batteries with PVDF-HFP quasi-solid electrolyte membranes. The presented work analyzes the advantages of VMN-0.5 and the nature of the substituted metal in relation to the electrochemical properties of the NASICON-type structure, which will facilitate further commercialization of SIBs.

18.
Small ; 20(14): e2306272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988649

RESUMEN

Precise control of pore volume and size of carbon nanoscale materials is crucial for achieving high capacity and rate performances of charge/discharge. In this paper, starting from the unique mechanism of the role of In, Zn combination, and carboxyl functional groups in the formation of the lumen and pore size, the composition of InZn-MIL-68 is regulated to precisely tune the diameter and wall pore size of the hollow carbon tubes. The hollow carbon nanotubes (CNT) with high-capacity storage and fast exchange of Na+ ions and charges are prepared. The CNT possess ultra-high specific capacitance and ultra-long cycle life and also offer several times higher Na+ ion storage capacity and rate performance than the existing CNTs. Density functional theory calculations and tests reveal that these superior characteristics are attributed to the spacious hollow structure, which provides sufficient space for Na+ storage and the tube wall's distinctive porosity of tube wall as well as open ends for facilitating Na+ rapid desorption. It is believed that precise control of sub-nanopore volume and pore size by tuning the composition of the carbon materials derived from bimetallic metal-organic frameworks (MOFs) will establish the basis for the future development of high-energy density and high-power density supercapacitors and batteries.

19.
Small ; : e2402072, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773874

RESUMEN

Prussian blue analogues (PBAs) exhibiting hollow morphologies have garnered considerable attention owing to their remarkable electrochemical properties. In this study, a one-pot strategy is proposed for the synthesis of MnFe PBA open cages. The materials are subsequently employed as cathode electrode in sodium-ion batteries (SIBs). The simultaneous evolution of structure, morphology, and performance during the synthesis process is investigated. The findings reveal substantial structural modifications as the reaction time is prolonged. The manganese content in the samples diminishes considerably, while the potassium content experiences an increase. This compositional variation is accompanied by a significant change in the spin state of the transition metal ions. These structural transformations trigger the occurrence of the Kirkendall effect and Oswald ripening, culminating in a profound alteration of the morphology of MnFe PBA. Moreover, the shifts in spin states give rise to distinct changes in their charge-discharge profiles and redox potentials. Furthermore, an exploration of the formation conditions of the samples and their variations before and after cycling is conducted. This study offers valuable insights into the intricate relationship between the structure, morphology, and electrochemical performance of MnFe PBA, paving the way for further optimizations in this promising class of materials for energy storage applications.

20.
Small ; 20(31): e2311197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593375

RESUMEN

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda