Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(42): e2317375121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378084

RESUMEN

The detection of numerous and relatively bright galaxies at redshifts z > 9 has prompted new investigations into the star-forming properties of high-redshift galaxies. Using local forms of the initial mass function (IMF) to estimate stellar masses of these galaxies from their light output leads to galaxy masses that are at the limit allowed for the state of the Lambda Cold Dark Matter (ΛCDM) Universe at their redshift. We explore how varying the IMF assumed in studies of galaxies in the early universe changes the inferred values for the stellar masses of these galaxies. We infer galaxy properties with the spectral energy distribution (SED) fitting code Prospector using varying IMF parameterizations for a sample of 102 galaxies with photometry from the James Webb Space Telescope, JWST Advanced Deep Extragalactic Survey that are spectroscopically confirmed to be at [Formula: see text], with additional photometry from the JWST Extragalactic Medium Band Survey for twenty-one of the galaxies. We demonstrate that models with stellar masses reduced by a factor of three or more do not affect the modeled SED.

2.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38610490

RESUMEN

On-orbit assembling space telescope (OAST) is one of the most feasible methods to implement a large-scale space telescope. Unlike a monolithic space telescope (such as Hubble Space Telescope, HST) or a deployable space telescope (such as James Webb Space Telescope, JWST), OAST can be assembled in the spatial environment. To ensure proper telescope performance, OAST must be equipped with a large deployable sunshade. In order to verify the technology of the OAST, the authors propose a modular space telescope on the China Space Station (CSS) and design a deployable sunshade. The deployable mechanism of the sunshade is made up of a radial deployable mechanism and an axial deployable mechanism. The paper describes the overall design approach, the key component technologies, and the design and preliminary testing of a part of the deployable sunshade assembly.

3.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38400349

RESUMEN

The attainment of a substantial aperture in the rotating synthetic aperture imaging system involves the rotation of a slender rectangular primary mirror. This constitutes a pivotal avenue of exploration in space telescope research. Due to the considerable aspect ratio of the primary mirror, environmental disturbances can significantly impact its surface shape. Active optical technology can rectify surface shape irregularities through the detection of wavefront information. The Phase Diversity (PD) method utilizes images captured by the imaging system to compute wavefront information. In this study, the PD method is applied to rotating synthetic and other rectangular aperture imaging systems, employing Legendre polynomials to model the wavefront. The study delved into the ramifications stemming from the aperture aspect ratio and aberration size.

4.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430618

RESUMEN

Ellipticity performance of space telescopes is important for exploration of dark matter. However, traditional on-orbit active optical alignment of space telescopes often takes "minimum wavefront error across the field of view" as the correction goal, and the ellipticity performance after correcting the wave aberration is not optimal. This paper proposes an active optical alignment strategy to achieve optimal ellipticity performance. Based on the framework of nodal aberration theory (NAT), the aberration field distribution corresponding to the optimal full field-of-view ellipticity is determined using global optimization. The degrees of freedom (DOFs) of the secondary mirror and the folded flat mirror are taken as the compensation DOFs to achieve the optimal ellipticity performance. Some valuable insights into aberration field characteristics corresponding to optimal ellipticity performance are presented. This work lays a basis for the correction of ellipticity for complicated optical systems.

5.
Sensors (Basel) ; 23(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37430746

RESUMEN

The aperture of space telescopes increases with their required resolution, and the transmission optical systems with long focal length and diffractive primary lens are becoming increasingly popular. In space, the changes in the pose of the primary lens relative to the rear lens group have a significant impact on the imaging performance of the telescope system. The measurement of the pose of the primary lens in real-time and with high-precision is one of the important techniques for a space telescope. In this paper, a high-precision real-time pose measurement method for the primary lens of a space telescope in orbit based on laser ranging is proposed, and a verification system is established. The pose change of the telescope's primary lens can be easily calculated through six high-precision laser distance changes. The measurement system can be installed freely, which solves the problems of complex system structure and low measurement accuracy in traditional pose measurement techniques. Analysis and experiments show that this method can accurately obtain the pose of the primary lens in real-time. The rotation error of the measurement system is 2 × 10-5 degrees (0.072 arcsecs), and the translation error is 0.2 µm. This study will provide a scientific basis for high-quality imaging of a space telescope.

6.
Geophys Res Lett ; 49(11): e2021GL097390, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865009

RESUMEN

We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.

7.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20200141, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222639

RESUMEN

A 20 m space telescope is described with an unvignetted 1° field of view-a hundred times larger in area than fields of existing space telescopes. Its diffraction-limited images are a hundred times sharper than from wide-field ground-based telescopes and extend over much if not all the field, 40 arcmin diameter at 500 nm wavelength, for example. The optical system yielding a 1°, 1.36 m diameter image at f/3.9 has relatively small central obscuration, 9% by area on axis, and is fully baffled. Several carousel-mounted instruments can each access directly the full image. The initial instrument complement includes a 400 gigapixel silicon imager with 2 µm pixels (0.005 arcsec), and a 60 gigapixel HgCdTe imager with 5 µm pixels (0.012 arcsec). A multi-object spectrograph with 10 000 fibres will allow spectroscopy with 0.02 arcsec resolution. Direct imaging and spectroscopy of exoplanets can take advantage of the un-aberrated, on-axis image (5 nm RMS wavefront error). While this telescope could be built for operation in free space, a site accessible to a human outpost at the Moon's south pole would be advantageous, for assembly and repairs. The lunar site would allow also for the installation of new instruments to keep up with evolving scientific priorities and advancing technology. Cooling to less than 100E K would be achieved with a surrounding cylindrical thermal shield. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

8.
Exp Astron (Dordr) ; 47(1): 29-63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32684665

RESUMEN

The Twinkle space telescope has been designed for the characterisation of exoplanets and Solar System objects. Operating in a low Earth, Sun-synchronous orbit, Twinkle is equipped with a 45 cm telescope and visible (0.4 - 1 µm) and infrared (1.3 - 4.5 µm) spectrometers which can be operated simultaneously. Twinkle is a general observatory which will provide on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or accessible only to oversubscribed observatories in the short-term future. Here we explore the ability of Twinkle's spectrometers to characterise the currently-known exoplanets. We study the spectral resolution achievable by combining multiple observations for various planetary and stellar types. We also simulate spectral retrievals for some well-known planets (HD 209458 b, GJ 3470 b and 55 Cnc e). From the exoplanets known today, we find that with a single transit or eclipse, Twinkle could probe 89 planets at low spectral resolution (R < 20) as well as 12 planets at higher resolution (R > 20) in channel 1 (1.3 - 4.5 µm). With 10 observations, the atmospheres of 144 planets could be characterised with R <20 and 81 at higher resolutions. Upcoming surveys will reveal thousands of new exoplanets, many of which will be located within Twinkle's field of regard. TESS in particular is predicted to discover many targets around bright stars which will be suitable for follow-up observations. We include these anticipated planets and find that the number of planets Twinkle could observe in the near infrared in a single transit or eclipse increases R > 20. By stacking 10 transits, there are 1185 potential targets for study at R < 20 as well as 388 planets at higher resolutions. The majority of targets are found to be large gaseous planets although by stacking multiple observations smaller planets around bright stars (e.g. 55 Cnc e) could be observed with Twinkle. Photometry and low resolution spectroscopy with Twinkle will be useful to refine planetary, stellar and orbital parameters, monitor stellar activity through time and search for transit time and duration variations (TTVs and TDVs). Refinement of these parameters could be used to in the planning of observations with larger space-based observatories such as JWST and ARIEL. For planets orbiting very bright stars, Twinkle observations at higher spectral resolution will enable us to probe the chemical and thermal properties of an atmosphere. Simultaneous coverage across a wide wavelength range will reduce the degeneracies seen with Hubble and provide access to detections of a wide range molecules. There is the potential to revisit them many times over the mission lifetime to detect variations in cloud cover.

9.
Proc Natl Acad Sci U S A ; 111(48): E5123-32, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404343

RESUMEN

We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×10(15) cm(-2). Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.


Asunto(s)
Medio Ambiente Extraterrestre , Júpiter , Vapor , Agua/análisis , Exobiología/métodos , Hidrógeno/análisis , Hidrógeno/química , Hielo , Oxígeno/análisis , Oxígeno/química , Telescopios , Agua/química
10.
Front Chem ; 12: 1439194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296366

RESUMEN

The James Webb Space Telescope (JWST) opened a new era for the identification of molecular systems in the interstellar medium (ISM) by vibrational features. One group of molecules of increasing interest is cyano-derivatives of aromatic organic molecules, which have already been identified in the ISM on the basis of the analysis of rotational signatures, and so, are plausible candidates for the detection by the JWST. Benzonitrile considered in this work represents a suitable example for the validation of a computational strategy, which can be further applied for different, larger, and not-yet observed molecules. For this purpose, anharmonic simulations of infrared (IR) spectra have been compared with recent FTIR experimental studies. The anharmonic computations using the generalized second-order vibrational perturbation theory (GVPT2) in conjunction with a hybrid force field combining the harmonic part of revDSD-PBEP86-D3/jun-cc-pVTZ with anharmonic corrections from B3LYP-D3/SNSD show very good agreement with those in the experiment, with a mean error of 11 c m - 1 for all fundamental transitions overall and only 2 c m - 1 for the C ≡ N stretching fundamental at 4.49 µ m . The inclusion of overtones up to three-quanta transitions also allowed the prediction of spectra in the near-infrared region, which shows distinct features due to C ≡ N overtones at the 2.26 µ m and 1.52 µ m . The remarkable accuracy of the GVPT2 results opens a pathway for the reliable prediction of spectra for a broader range of cyano-astroCOMs.

11.
Front Robot AI ; 9: 995813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313251

RESUMEN

In-Space Services aim to introduce sustainable futuristic technology to support the current and growing orbital ecosystem. As the scale of space missions grows, there is a need for more extensive infrastructures in orbit. In-Space Assembly missions would hold one of the key responsibilities in meeting the increasing demand. In the forthcoming decades, newer infrastructures in the Earth's orbits, which are much more advanced than the International Space Station are needed for in-situ manufacturing, servicing, and astronomical and observational stations. The prospect of in-orbit commissioning a Large Aperture Space Telescope (LAST) has fuelled scientific and commercial interests in deep-space astronomy and Earth Observation. However, the in-situ assembly of such large-scale, high-value assets in extreme environments, like space, is highly challenging and requires advanced robotic solutions. This paper introduces an innovative dexterous walking robotic system for in-orbit assembly missions and considers the Large Aperture Space Telescope system with an aperture of 25 m as the use case. The top-level assembly requirements are identified with a deep insight into the critical functionalities and challenges to overcome while assembling the modular LAST. The design and sizing of an End-over-end Walking Robot (E-Walker) are discussed based on the design of the LAST and the specifications of the spacecraft platform. The E-Walker's detailed design engineering includes the structural finite element analysis results for space and earth-analogue design and the corresponding actuator selection methods. Results of the modal analysis demonstrate the deflections in the E-Walker links and end-effector in the open-loop due to the extremities present in the space environment. The design and structural analysis of E-Walker's scaled-down prototype is also presented to showcase its feasibility in supporting both in-orbit and terrestrial activities requiring robotic capabilities over an enhanced workspace. Further, the mission concept of operations is presented based on two E-Walkers that carry out the assembly of the mirror modules. The mission discussed was shortlisted after conducting an extensive trade-off study in the literature. Simulated results prove the dual E-Walker robotic system's efficacy for accomplishing complex in-situ assembly operations through task-sharing.

12.
Micromachines (Basel) ; 10(6)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159209

RESUMEN

Micro-Electro-Mechanical Systems (MEMS) Deformable Mirrors (DMs) enable precise wavefront control for optical systems. This technology can be used to meet the extreme wavefront control requirements for high contrast imaging of exoplanets with coronagraph instruments. MEMS DM technology is being demonstrated and developed in preparation for future exoplanet high contrast imaging space telescopes, including the Wide Field Infrared Survey Telescope (WFIRST) mission which supported the development of a 2040 actuator MEMS DM. In this paper, we discuss ground testing results and several projects which demonstrate the operation of MEMS DMs in the space environment. The missions include the Planet Imaging Concept Testbed Using a Recoverable Experiment (PICTURE) sounding rocket (launched 2011), the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) sounding rocket (launched 2015), the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) high altitude balloon (expected launch 2019), the High Contrast Imaging Balloon System (HiCIBaS) high altitude balloon (launched 2018), and the Deformable Mirror Demonstration Mission (DeMi) CubeSat mission (expected launch late 2019). We summarize results from the previously flown missions and objectives for the missions that are next on the pad. PICTURE had technical difficulties with the sounding rocket telemetry system. PICTURE-B demonstrated functionality at >100 km altitude after the payload experienced 12-g RMS (Vehicle Level 2) test and sounding rocket launch loads. The PICTURE-C balloon aims to demonstrate 10 - 7 contrast using a vector vortex coronagraph, image plane wavefront sensor, and a 952 actuator MEMS DM. The HiClBaS flight experienced a DM cabling issue, but the 37-segment hexagonal piston-tip-tilt DM is operational post-flight. The DeMi mission aims to demonstrate wavefront control to a precision of less than 100 nm RMS in space with a 140 actuator MEMS DM.

13.
Artículo en Inglés | MEDLINE | ID: mdl-27042684

RESUMEN

Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms.

14.
J Geophys Res Space Phys ; 119(3): 1994-2008, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26167441

RESUMEN

We examine a unique data set from seven Hubble Space Telescope (HST) "visits" that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar "auroral oval" morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near ∼15° colatitude, together with intermittent patchy forms at ∼10° colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF Bz , being present during all four visits with positive Bz and absent during all three visits with negative Bz . The most continuous such forms occur in the case of strongest positive Bz . These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF Bz however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras. KEY POINTS: We examine seven cases of joint HST Saturn auroral images and Cassini IMF dataThe persistent but variable dawn arc shows no obvious IMF dependencePatchy postnoon auroras are present for northward IMF but not for southward IMF.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30700923

RESUMEN

The Kepler Mission photometer is an unusually complex array of CCDs. A large number of time-varying instrumental and systematic effects must be modeled and removed from the Kepler pixel data to produce light curves of sufficiently high quality for the mission to be successful in its planet-finding objective. After the launch of the spacecraft, many of these effects are difficult to remeasure frequently, and various interpolations over a small number of sample measurements must be used to determine the correct value of a given effect at different points in time. A library of software modules, called Focal Plane Characterization (FC) Models, is the element of the Kepler Science Processing Pipeline that handles this. FC, or products generated by FC, are used by nearly every element of the Science Operations Center (SOC) processing chain. FC includes Java components: database persistence classes, operations classes, model classes, and data importers; and MATLAB code: model classes, interpolation methods, and wrapper functions. These classes, their interactions, and the database tables they represent, are discussed. This paper describes how these data and the FC software work together to provide the pipeline with the correct values to remove non-photometric effects caused by the photometer and its electronics from the Kepler light curves. The interpolation mathematics is reviewed, as well as the special case of the sky-to-pixel/pixel-to-sky coordinate transformation code, which incorporates a compound model that is unique in the SOC software.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda